11. Gasentladungsbildschirme

<u>Inhalt</u>

- 11.1 Technologien für flache Bildschirme
- 11.2 Aufbau von Gasentladungsbildschirmen
- **11.3 Herstellungsprozess**
- **11.4 Lichterzeugung in Plasmabildschirmen**
- 11.5 Betrieb der Gasentladung
- 11.6 Auswahlkriterien für Bildschirmleuchtstoffe
- **11.7 Leuchtstoffe in CRTs und PDPs**
- **11.8 Rote PDP Leuchtstoffe**
- **11.9 Grüne PDP Leuchtstoffe**
- **11.10 Blaue PDP Leuchtstoffe**
- **11.11 Status und Ausblick**

Technologie	Effizienz	Max. Größe	Anwen	dungsbereiche
Organische EL	2 lm/W	10"	Autom	obile, Mobiltelefone
Anorg. EL	1 lm/W	17"	Instru	nentenanzeigen
FED	5 lm/W	17"		
LCD	4 lm/W	65"	Laptop	os, Monitore, LCD-TV
PALC	4 lm/W	40 - 50"	-	
LED Array	8 - 10 lm/W	> 100"	Werbetafeln, Stadionanzeigen	
Projektions TV	5 lm/W	50 - 60"	TV	
PDP	5 lm/W	~ 300"	TV, Anzeigetafeln	
CRT	3 lm/W	36"	TV, Monitore	
Merke: Weißes Licht ~ 300 lm/W _{opt.} ⇒ Energieeffizienz von Bildschirmen ~ 1 – 3%				
Inkohärente Lichtqueller Prof. Dr. T. Jüstel	n			Kapitel Gasentladungsbildschirme Folie 2

Gasentladungsbildschirme

60" HDTV-PDP

Eigenschaften

Flach und groß (32 - 300 Zoll)

Dünn ~ 100 mm

Geringes Gewicht ~ 20 - 30 kg für 42 Zoll

Großer Betrachtungswinkel ~ 170°

Keine Verzerrungen

Keine Beeinflussung durch ext. Magnetfelder

Kapitel Gasentladungsbildschirme Folie 3

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Emissive Bildschirmtypen

Technologie	CRT	PDP
Anregungsquelle	Elektronenstrahl	Gasentladung
Anregungsenergie	20 - 30 keV	6 - 10 eV
Leuchtstoffe	Sulfide	Oxide
Gasdruck	< 10 ⁻³ mbar	200 - 300 mbar
Betrachtungswinkel	> 160 °	> 160 °
Inkohärente Lichtquellen		Kanitel Gasentladungshildschirme
Prof. Dr. T. Jüstel		Folie 4

Plasmabildschirme 1929

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.2 Aufbau von Gasentladungsbildschirmen

Vereinfachter Schichtaufbau

Frontglasplatte

Buselektroden (ITO)

Dielektrikum

MgO Schutzschicht

RGB Leuchtstoffe Dielektrikum

Adresselektroden (Ag)

Rückseitige Glasplatte (PD200)

Gasfüllung ~ 500 Torr Ne mit 3 - 5 % Xe

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.2 Aufbau von Gasentladungsbildschirmen

Aufbau einer Plasmazelle

Glasrückplatte

Strukturierung durch Stege (engl.: Barrier ribs)

TiO₂-Schicht als Reflektor

Leuchtstoffschicht (mit Additiven)

Konischer Aufbau

U-förmiger Aufbau

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.3 Herstellungsprozess

Anfertigung der rückseitigen Platte

BACK PLATE

Effizienz der Lichterzeugung

 $\eta_{Schirm} = \eta_{Gasentladung} \cdot \eta_{UV} \cdot \eta_{Leuchtstoff} \cdot \eta_{Auskopplung}$

		PDP-Zelle	Xe ₂ *- Lampe	e Hg - Lampe
	$\eta_{_{Plasma}}$	24 %	70 %	75 %
	η _{υν}	40 %	90 %	98 %
	$\eta_{{\sf Leuchtstoff}}$	20 %	25 %	44 %
	$\eta_{_{Auskopplung}}$	50 %	90 %	98 %
	η_{schirm}	1.0 %	14 %	30 %
	Lichtausbeute	3 lm/W	40 lm/W	90 lm/W
Inkohärente Li Prof. Dr. T. Jüs	ichtquellen stel			Kapitel Gasentladungsbildschirme Folie 11

50% Xe₂*-Excimer and 50% Xe* Resonanz-Emission bei 25 mbar Xe Partialdruck

PDPs 2005: Xe-Anteil bei 10 - 15% und 300 mbar Gesamtdruck, d. h. Xe₂*-Excimer Strahlung überwiegt

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Einfluss des Xe-Partialdruckes

11.4 Lichterzeugung in Plasmabildschirmen Abhängigkeit vom Xe/Ne-Partialdruck 100% Ne Ne/Xe 100% Xe Hohe Zündspannung Niedrige Zündspannung $\sim 2 \,\mathrm{kV}$ ~ 300 V Keine sichtbare Emission Sichtbare Emission (Farbe wird durch den 580 - 720 nm Leuchtstoff definiert) (Monochrom rot) **VUV** Emission **VUV** Emission 147, 150, 172 nm 74 nm

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.5 Betrieb der Gasentladung

Adressierung der Pixel

- \Rightarrow Durch 8-Bit Adressierung erhält man $2^8 = 256$ Helligkeitsstufen
- \Rightarrow Bei einem RGB-Bildschirm hat man demnach 256³ = 16.7 Mio. Mischfarben

11.5 Betrieb der Gasentladung

Einfluss der Oberfläche auf die Plasmazündung durch Ionen induzierte Emission von Sekundärelektronen

Anzahl emititierter Elektronen

 $\gamma_i =$ Anzahl Ionen auf die Oberfläche

$$V_f = \frac{D^2 \cdot p \cdot d}{\left(\ln \frac{C \cdot p \cdot d}{\ln(1/\gamma_i + 1)}\right)^2}$$

MgO ist das Material mit dem höchsten $\gamma_{Ne} \sim 0.5$

Inkohärente Lichtquellen			
Prof. Dr. T. Jüstel			

11.5 Betrieb der Gasentladung

Aufgaben der MgO-Schutzschicht

MgO-Schutzschicht bewirkt

- einen Schutz gegen Sputtering
- eine Reduktion der Zündspannung

11.6 Auswahlkriterien für Bildschirmleuchtstoffe

Stabilität

Temperaturstabilität Stabilität in Suspension Plasmastabilität Farbpunktstabilität

Lichtausbeute

Linearität Effizienz

Bildqualität

Bildartefakte Farbraum

Umweltverträglichkeit

Energieeffizienz Toxizität Oxidationsempfindlichkeit Löslichkeit, Oberflächenpotenzial Resistenz gegen Sputtering Photooxidation, -reduktion

Sättigung Quantenausbeute QA, Absorption A

Abklingzeit τ Farbpunkt x, y

Quantenausbeute QA, Absorption A Chemische Zusammensetzung

> Kapitel Gasentladungsbildschirme Folie 21

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.6 Auswahlkriterien für Bildschirmleuchtstoffe

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.6 Auswahlkriterien für Bildschirmleuchtstoffe

11.7 Leuchtstoffe in CRTs und PDPs

Kommerzielle CRT und PDP Leuchtstoffe

Farbe	Chemische Zusammensetzung	X	У	
Blau	ZnS:Ag	0.15	0.08	
Grün	ZnS:Cu	0.29	0.61	
	$Y_3(Al,Ga)_5O_{12}$:Tb	0.37	0.55	
	Y ₂ SiO ₅ :Tb	0.33	0.58	CRT
	Gd ₂ O ₂ S:Tb	0.36	0.57	
Rot	YVO ₄ :Eu	0.66	0.33	
	$Y_2O_2S:Eu$	0.66	0.33	
Blau	$(\mathbf{Y},\mathbf{Gd})(\mathbf{V},\mathbf{P})\mathbf{O}_{4}$	0.16	0.13	
	BaMgAl ₁₀ O ₁₇ :Eu	0.15	0.06	
Grün	$Zn_2SiO_4:Mn$	0.25	0.70	
	BaMgAl ₁₀ O ₁₇ :Eu,Mn	0.15	0.72	
	$BaAl_{12}O_{19}:Mn$	0.19	0.73	PDP
	(Y,Gd)BO ₃ :Tb	0.34	0.62	
Rot	(Y,Gd)BO ₃ :Eu	0.64	0.35	
	$(\mathbf{Y},\mathbf{Gd})_2\mathbf{O}_3$:Eu	0.65	0.34	
	(Y,Gd)(V,P)O ₄ :Eu	0.66	0.33	
Inkohärente Li Prof. Dr. T. Jüs	Inkohärente LichtquellenKapitel GasentladungsbildschirmProf. Dr. T. JüstelFolie 24		ldschirme	

11.7 Leuchtstoffe in CRTs und PDPs

Eu²⁺ Leuchtstoffe Übergang: $4f^65d^1 \rightarrow 4f^7$ (Bande) Lage hängt vom Kristallfeld ab $\tau \sim 1 \ \mu s$ Eu³⁺ Leuchtstoffe Übergang: ${}^{5}D_{0} \rightarrow {}^{7}F_{I}$ (Linien) Inversionssymmetrie (S₆, D_{3d}) Magnetischer Dipolübergang ${}^{5}D_{0} - {}^{7}F_{1}$ $\Delta J = 0, \pm 1 (J = 0 \rightarrow J = 0 \text{ verboten})$ MeBO₃:Eu (Calcit, Vaterit) $\tau \sim 8 - 16 \, \text{ms}$ Keine Inversionssymmetrie Elektrischer Dipolübergang ⁵D₀ -⁷F_{2.4} $\Delta J \leq 6 (J_{anfang} = 0 \rightarrow J = 2, 4, 6)$ Y₂O₃:Eu (Bixbyit), Y(V,P)O₄:Eu (Xenotim) $\tau \sim 2 - 5 \text{ ms}$

Anregungsspektren und VUV-Lichtausbeute von Eu³⁺-Leuchtstoffen

Leuchtstoff	Lichtausbeute LO 147 nm 172 nm		
(Y,Gd)BO ₃ :Eu	0.78	0.75	
Y ₂ O ₃ :Eu	0.60	0.69	
YVO ₄ :Eu	0.41	0.50	
Y ₂ O ₂ S:Eu	0.26	0.32	

Y₂O₂S:Eu

4.4 eV

Abklingzeit von Eu³⁺-Leuchtstoffen

Abklingzeit nimmt mit steigender Abweichung von der Inversionssymmetrie des Gitterplatzes für Eu³⁺ ab

 \Rightarrow Relaxation der Auswahlregeln!

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Lokale Symmetrie von Y³⁺ bzw. Eu³⁺ in YBO₃ (Pseudo-Vaterit)

Platz A

(J. Solid State Chem. 128 (1997) 261-266)

- Platz A: Geringe Abweichung von der S₆ Symmetrie (C₃)
- Platz B: Starke Abweichung von der S₆ Symmetrie (C₃)
- \Rightarrow ⁵D₀ ⁷F_{2,4} Emission wird aufgrund der Abweichung von der S₆ Symmetrie beobachtet

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Emissionsspektren von LnBO₃:Eu (Pseudo-Vaterit)

Farbpunkt verschiebt sich von Orange nach Rot in der Reihe Gd³⁺, Y³⁺, Lu³⁺ Verzerrung hängt ab von ∆r[(Eu³⁺) - r(Me³⁺)]

Inkohärente Lichtquellen	Kapitel Gasentladungsbildschirme
Prof. Dr. T. Jüstel	Folie 31

Eindringtiefe von VUV-Strahlung in Materie R ~ 1.5 μm 254 nm entspricht ~ 10 kV R < 0.1 μm</td> 147 nm entspricht ~ 1 kV

Kleines Anregungsvolumen

- \Rightarrow PDP Leuchtstoffe sind hochbelastet:
- Sättigung
- Starke Alterung
- Oberflächenschicht der Partikel muss phasenrein und hoch kristallin sein

Farbsättigung

<u>Mn²⁺-Leuchtstoffe</u> y-Koordinate: 0.69 - 0.73

Tb³⁺-Leuchtstoffe

y-Koordinate: 0.58 - 0.62

Tb³⁺ hat Emissionslinien-Multipletts bei 590 und 620 nm

Kapitel Gasentladungsbildschirme Folie 37

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Spektren der grünen PDP-Pixel mit Zn₂SiO₄:Mn

Spektren der grünen PDP-Pixel mit (Y,Gd)BO₃:Tb

•

Leuchtstoffe im System MeO-MgO-Al₂O₃

Me = Ba (1.34 Å)

 $BaMgAl_{10}O_{17}$

- BAM
- β-Alumina
- BaMg₃Al₁₄O₂₅ β -Alumina

Me = Sr (1.12 Å)

 $SrMgAl_{10}O_{17}$

SAM

CAM

- β-Alumina
- $Sr_2MgAl_{22}O_{36} = SrMgAl_{10}O_{17} + SrAl_{12}O_{19}$ (β -Alumina + Magnetoplumbit)

Me = Ca (0.99 Å)

- CaMgAl₁₄O₂₃ Magnetoplumbit
- CaMg₂Al₁₆O₂₇ Magnetoplumbit
- $CaMgAl_{10}O_{17}$ β -Alumina (nicht stabil \rightarrow Magnetoplumbit)

Struktur von BaMgAl₁₀O₁₇

Lokalisation des Europiums

- Eu²⁺ Zwischenschichten
- Eu³⁺ Spinellblöcke

Mögliche Nebenphasen

- Al_2O_3
- $BaAl_2O_4$
- $MgAl_2O_4$
- EuAl₁₁O₁₈
- EuAlO₃
- EuMgAl₁₁O₁₉
- $Ba_{0.75}Al_{11}O_{17.25}$
- ..

Elementarzelle

Spinellblock MgAl₁₀O₁₆

Zwischenschicht BaO

Spinellblock MgAl₁₀O₁₆

Zwischenschicht BaO

Spinellblock MgAl₁₀O₁₆

Isostrukturell zu β -Alumina NaAl₁₁O₁₇

Kapitel Gasentladungsbildschirme Folie 41

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Struktur von BaMgAl₁₀O₁₇

 \Rightarrow Relativ geringe Kristallfeldaufspaltung \Rightarrow blaue Emissionsbande

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Lumineszenzspektren von BaMgAl₁₀O₁₇:Eu²⁺

Hohe VUV-Absorption und Quantenausbeute nahe 100 %

Halbwertsbreite der Emissionsbande steigt mit der Anregungsenergie

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

Farbpunkt: Einfluss der Eu²⁺-Konzentration

Grünverschiebung des Farbpunktes durch Erhöhung der Eu²⁺ Konzentration \Rightarrow Einbau von Eu²⁺ destabilisiert die BAM Phase und führt zur Bildung von BaAl₂O₄:Eu

Inkohärente Lichtquellen
Prof. Dr. T. Jüstel

Photolumineszenz von BaMgAl₁₀O₁₇:Eu²⁺

BaMgAl₁₀O₁₇:Eu²⁺: Stabilitätsverbesserung durch Teilchenbeschichtung

Teilchenbeschichtung bestehend aus einem inerten Material wirkt als Barriere füra) SauerstoffKeine thermische Degradationb) 74 nm (147 nm) Strahlungverringerte Photodegradation

Materialien: Al₂O₃, AlPO₄, Ca₂P₂O₇, SiO₂, MgO

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.11 Status und Ausblick

Vergleich zwischen CRTs und PDPs (Stand 2008)

	PDP-TV	CRT-TV
Bildschirmdiagonale	80 cm - 750 cm	max. 90 cm
	(32" - 300")	(max. 36'')
Luminanz	100 - 150 Cd/m ²	100 - 130 Cd/m ²
(1% weißer Bildschirm)		
Peak-Luminanz	1000 Cd/m ²	500 Cd/m ²
(weißer Bildschirm)		
Effizienz	3-5 lm/W	2 - 3 lm/W
Leistungsaufnahme im typischen TV Betrieb	150 - 300 W	200 - 300 W
Lebensdauer	> 30000 h	> 30000 h
Gewicht	20 - 30 kg (42")	≈ 80 kg (36'')
Dicke	< 10 cm	$\geq 60 \text{ cm } (36'')$

Inkohärente Lichtquellen Prof. Dr. T. Jüstel

11.11 Status und Ausblick

Künftige Maßnahmen zur Verbesserung der Bildqualität von PDPs

Gasentladung

- Höherer Xe-Partialdruck (höhere Treiberspannung)
- Optimierung der Oberflächen (Materialien mit hohem γ-Koeffizient)

Zellgeometrie und Optik

- Verbesserung der Umsetzung erzeugter VUV Photonen
- Verbesserung der Lichtauskopplung zur Frontplatte (Reflektorschichten)
- Erhöhung des Kontrasts: Bildschirmglasdotierung, Farbfilter, Black-Matrix

Leuchtstoffe

- Verbesserung der Photostabilität der blauen Leuchtstoffe
- Verkürzung der Abklingzeit der grünen Leuchtstoffe
- Verbesserung des Farbpunktes und Verkürzung der Abklingzeit des roten Leuchtstoffes
- Erhöhung des Kontrasts durch farbige Leuchtstoffe