Energy Transfer and Unusual Decay Behaviour of BaCa₂Si₃O₉:Eu²⁺,Mn²⁺ Phosphor Matthias Müller and Thomas Jüstel

Münster University of Applied Sciences, Stegerwaldstraße 39, D-48565 Steinfurt, Germany

Conclusions

- Co-doped Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)₂Si₃O₉ exhibits two emission bands under UV excitation, located at 445 and 590 nm.
- The highest photoluminescence intensity was found for a Mn^{2+} concentration of x = 0.15.
- It was demonstrated that energy transfer from Eu²⁺ to Mn²⁺ is of resonant type and occurs via dipole-quadrupole interaction.

Experimental Section

- Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)₂Si₃O₉ samples were synthesized by a high temperature solid state reaction.
- The samples were primarily annealed at 1000 °C for 2 h in air and finally sintered in alumina boats at 1200 °C for 12 h in reducing forming gas atmosphere.
- Phase purity was investigated using x-ray powder diffractometry.
- PL of Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)₂Si₃O₉ possesses a "double-sigmoidal" temperature behaviour due to photoluminescence from crystallographically distinct sites of Eu²⁺. T_{1/2,a} and T_{1/2,b} values for Ba_{0.99}Eu_{0.01}(Ca_{0.90}Mn_{0.10})₂Si₃O₉ were calculated to be 242 and 666 K, respectively.
- Temperature dependent luminescence lifetime measurements revealed that thermal quenching in Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)₂Si₃O₉ is mainly caused by the Mn²⁺ ions.
- Luminescence lifetimes of Eu²⁺ show an unusual increase with increasing temperature in Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)₂Si₃O₉.
- The colour point of the emission of $Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_x)_2Si_3O_9$ can be tuned from blue to magenta colour range by increasing the Mn²⁺ concentration.

 Optical properties were investigated by recording photoluminescence spectra as well as by performing luminescence lifetime measurements at different temperatures. Furthermore, diffuse reflectance measurements were executed (reflectance standard: BaSO₄).

 $\mathsf{Ba}_{0.99}\mathsf{Eu}_{0.01}\mathsf{Ca}_{2}\mathsf{Si}_{3}\mathsf{O}_{9}$

 $Ba_{0.99}Eu_{0.01}(Ca_{0.95}Mn_{0.05})_{2}Si_{3}O_{9} Ba_{0.99}Eu_{0.01}(Ca_{0.80}Mn_{0.20})_{2}Si_{3}O_{9}$

Background

- Nowadays, most of the commercially available white light emitting pcLEDs comprise a blue emitting (In,Ga)N chip pumping a green-yellow emitting phosphor, e.g. (Y,Gd)₃Al₅O₁₂:Ce³⁺.
- Unfortunately, these light sources are unpopular for domestic lighting due to high colour temperature and low colour rendering index (CRI)
- One approach to obtain reasonable CRIs, is to use a phosphor blend comprising a blue, green, and red phosphor, which is excited by an ultraviolet emitting LED.
- However, these packages underlie a loss in blue emission due to re-absorption

Excitation and emission spectra of selected x = 0.15. samples.

Acknowledgement

The authors are grateful to Merck KGaA Darmstadt, Germany for generous financial support.

Highest photoluminescence intensity of

 $Ba_{0.99}Eu_{0.01}(Ca_{1-x}Mn_{x})_{2}Si_{3}O_{9}$ was found for

by the green and red phosphors.

 Alternatively, the ion couple Eu²⁺ and Mn²⁺ can be used. The broad emission bands in the blue and red spectral range of Eu²⁺ and Mn²⁺ in many host materials complement each other to white light due to additive colour mixing.

• Eu²⁺ usually exhibits a broad excitation band in the UV range and is well appropriated for pumping by UV LEDs. Additionally, the blue emission band of Eu²⁺ is also suitable to sensitize the spin and parity forbidden [Ar]3d⁵-[Ar]3d⁵ excitation transitions of Mn²⁺ via energy transfer.

Münster University of Applied Sciences

Matthias Müller Department of Chemical Engineering Inorganic Chemistry and Material Science Research Group Prof. Dr. Thomas Jüstel Phone +49 2551 9-62851 e-mail: matthias_mueller@fh-muenster.de, tj@fh-muenster.de

Tailored Optical Materials