Photoluminescence of Mn⁴⁺ activated monoclinic Na₃AlF₆

Thomas Jansen, David Böhnisch, Florian Baur, and Thomas Jüstel Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany

Corresponding authors: t.jansen@fh-muenster.de; tj@fh-muenster.de

AFM 2016, August 8-11, Jeju, South Korea

Background

 Mn^{4+} activated luminescent materials have attracted much attention recently. Especially alkaline metal hexafluorides, such as $K_2SiF_6:Mn^{4+}$ or $K_2TiF_6:Mn^{4+}$, can emit light in the red region under blue or near UV excitation and meet thus the efficiency and color quality of future "warm white" phosphor converted LEDs (pc-LED). However, we investigated the Mn^{4+} photoluminescence (PL) in the well-known monoclinic mineral cryolite (Na_3AIF_6). We applied a cation-exchange method in order to synthesize Mn^{4+} doped Na_3AIF_6 . $Na_3AIF_6:Mn^{4+}$ exhibits efficient red photoluminescence peaking at 627 nm, which can be assigned to the ${}^2E_g \rightarrow {}^4A_{2g}$ intraconfigurational transition of Mn^{4+} ([Ar]3d⁶ configuration) within the [MnF_6]²⁻ octahedra on the aluminum site in the cryolite host structure. Photoluminescence properties, such as temperature dependence of the PL intensity and luminescence lifetime are presented. Colour Rendering Indices (CRI) and Luminous Efficacies (LE) are compared with the well-established phosphor $K_2SiF_6:Mn^{4+}$.

- Na₃AIF₆:Mn⁴⁺ was synthesized via a simple and fast one-step method
- Na₃AlF₆ shows a direct band gap at \sim 7 eV
- Na₃AIF₆:Mn⁴⁺ exhibits bright red photoluminescence peaking at 627 nm. ZPL is at 619 nm with various phonon side bands (stokes and anti-stokes)
- Excitation maxima are at 358 and 466 nm
- Emission shows relatively low quenching behavior with a $\rm T_{1/2}$ value at 392 K
- Internal quantum efficiency is 50% ± 5%
- Lifetime measurements show strong drop of τ with increasing temperature. $T_{1/2}$ value at 285 K
- Luminous efficacy and colour rendering values of simulated warm white emitting pcLEDs comprising a dichromatic phosphor blend involving Na₃AIF₆:Mn⁴⁺ are calculated and compared to the performance of those warm white emitting pcLEDs comprising K₂SiF₆:Mn⁴⁺ (see Fig. 7 and Table 2)

Acknowledgement

The authors are grateful to Merck KGaA Darmstadt, Germany for generous financial support.