On the Optical Properties of Sr₃SiAl₁₀O₂₀ and Sr₃SiAl₁₀O₂₀:Mn⁴⁺

Thomas Jansen and Thomas Jüstel

Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstraße 39,

D-48565 Steinfurt, Germany

Corresponding authors: t.jansen@fh-muenster.de; tj@fh-muenster.de

Fm&NT 2017, April 24-27, Tartu, Estonia

Structure

Background

Mn4+ activated luminescent materials have attracted much attention recently. In particular, alkaline earth such Sr₄Al₁₄O₂₅:Mn⁴⁺ aluminates. as or CaAl₁₂O₁₉:Mn⁴⁺, emit light in the red region, which can be exploited in phosphor converted LEDs. We applied a sol-gel precursor with following ceramic method in order to synthesize highly crystalline Mn4+ $Sr_3SiAI_{10}O_{20}$. doped The compound Sr₃SiAl₁₀O₂₀:Mn⁴⁺ exhibits deep red photoluminescence peaking at 663 nm, which can be assigned to the $^2\text{E}_q$ \rightarrow $^4\text{A}_{2q}$ intraconfigurational transition of Mn4+ ([Ar]3d3 configuration) within the [MnO₆]⁸⁻ octahedra on the aluminum site in the $Sr_3SiAl_{10}O_{20}$ (Space group C12/m1) host structure. Photoluminescence (PL) properties, such as temperature dependence of the PL intensity and luminescence lifetime are presented. Furthermore, the PL intensity as function of activator concentration has been evaluated. Additionally, the band structure of the undoped host material has been treated with Density Functional Theory (DFT). The theoretical results were evaluated experimentally with diffuse UV-reflectance spectroscopy.

Results and Discussion

units)

ntensity (arb.

Table 1: Structual data of Sr₃SiAl₁₀O₂₀ (According to A. Rief and F. Kubel)

___s

Fig. 5 Excitation, emission, and reflectance sp Sr₃SiAl₁₀O₂₀:Mn⁴⁺ (0.1%) at room temperature.

150 200 erature (K) 100 Tem Fig. 11 Lifetime measurements with increasing temperature (Ex = 473 nm; Em = 663 nm) for exemplary chosen

 ${}^{4}A_{2} \rightarrow {}^{4}T$

Table 2: Calculated Racah parameter

21276

- Sr₃SiAl₁₀O₂₀:Mn⁴⁺ successfully was synthesized via sol-gel precursors followed by a ceramic method.
- The band structure was investigated by DFT calculations and experimentally **UV-reflectance** evaluated with spectroscopy.
- Sr₃SiAl₁₀O₂₀ shows a direct band gap at ~6 eV.
- At very low temperature (3K) distinct PL from two different crystallographic sites can be identified.
- Unusual Racah parameter have been found, which is explained by the strong deviation of the Mn4+-O2--Mn+ bond angle from 180°.
- Weak concentration quenching up to 5% Mn4+ of the PL has been found with the highest PL intensity at 0.1%
- Strong bi-sigmoidal shaped PL drop with increasing temperature.
- $Sr_3SiAl_{10}O_{20}$:Mn⁴⁺ has two T_{1/2} values: 183 K and 246 K.
- proof Lifetime measurements the statement, that luminescent takes place two distinct sites from with maior contribution from the AI(4) site.

integrals Acknowledgemen

elength (nm)

Emission spectra as function of the Mn⁴ ation. Inset shows the drop of the emission

The authors are grateful to Merck KGaA Darmstadt, Germany for generous financial support

CIW FB Chemieingenieurwesen Department of Chemical Engineering

FH MÜNSTER University of Applied Sciences \otimes