Halogene Übungen

Übungsaufgaben zum Kapitel "Halogene"

- 1. Nennen Sie für F, Cl, Br, und I jeweils ein natürliches Vorkommen!
- 2. Formulieren Sie die Reaktionsgleichungen für die Synthese von
- a) F₂ aus AgF₂
- b) Cl₂ aus NaCl (Chloralkalielektrolyse)
- c) Br₂ aus Meerwasser
- d) I_2 aus $Ca(IO_3)_2$
- e) HBr aus PBr₃!
- 3. Formulieren Sie die Reaktionsgleichungen für die Synthese von Chlor aus Chlorid mit den folgenden Oxidationsmitteln im sauren Milieu!
- a) MnO₂
- b) PbO₂
- c) MnO₄
- d) $Cr_2O_7^{2-}$
- 4. Geben Sie die Synthese und Verwendung folgender Verbindungen an!
- a) UF₆
- b) CIO₂
- c) AgBr
- d) WO_2I_2
- 5. Formulieren Sie die Reaktionsgleichungen für folgende Reaktionen!
- a) F₂ mit H₂O
- b) Disproportionierung von X_2 in H_2O (X = Cl, Br, I)
- 6. Welche Typen von Interhalogenverbindungen kennen Sie und welche Struktur haben diese gemäß dem VSEPR-Modell?
- 7. Formulieren Sie die Autoionisation von BrF₃ und leiten Sie die Strukturen der gebildeten Ionen aus dem VSEPR-Modell ab!
- 8. Wie müssen HBr und HI im Unterschied zu HF und HCl dargestellt werden?
- 9. Welche Sauerstoffsäuren des Chlors kennen Sie? In welchen Oxidationsstufen liegt das Chlor jeweils vor und welchen räumlichen Bau haben die Anionen? Welches sind die formalen Anhydride der Sauerstoffsäuren?
- 10. Eine Mischung aus NH_4CIO_4 und Al-Pulver wird als Treibstoff in Feststoffraketen eingesetzt. Formulieren Sie die Reaktionsgleichung unter der Annahme, dass ausschließlich Al_2O_3 , NO, $AlCl_3$, und H_2O gebildet werden! Berechnen Sie die Energiemenge, die bei einem Space Shuttle Start freigesetzt wird, wenn die Reaktion von 1 Mol NH_4CIO_4 mit Al-Pulver 1300 kJ ergibt und 850 t NH_4CIO_4 pro Start umgesetzt werden! (Zum Vergleich: 100 Mt H-Bombenexplosion ~ 10^{15} kJ, Super Nova Explosion ~ 10^{39} kJ)

Prof. Dr. T. Jüstel Anorganische Chemie I

Halogene Übungen

- 11. Wie kommt es zu der unterschiedlichen Farbe von Iod in organischen Lösungsmitteln?
- 12. Formulieren Sie die Reaktionsgleichung für die Reaktion von HF(g) mit den folgenden Spezies! a) SiO₂
- b) Na₂CO₃
- c) KF
- d) CaO
- e) C₂H₄
- 13. Welche Säure ist bei gleicher Konzentration stärker: HF oder HI und warum?
- 14. Skizzieren Sie das MO-Schema für F₂! Worauf lässt sich die Sonderstellung des Fluors zurückführen?
- 15. Worauf beruht die Antihaftwirkung von Polytetrafluorethylen, PTFE (Teflon®)?
- 16. Warum ist Perchlorat CIO₄- kinetisch stabiler als Chlorat CIO₃- oder Chlorit CIO₂-?
- 17. Warum kann Periodat IO₄- schneller als Perchlorat, ClO₄- reagieren?
- 18. Erläutern Sie das Konzept der Pseudohalogene!
- 19. Erklären Sie, warum Fluor das stärkste Oxidationsmittel ist, obwohl das Maximum der Elektronenaffinität beim Chlor liegt!
- 20. Formulieren Sie die Reaktionsgleichung für die Reaktion von Cl₂(g) mit den folgenden Spezies!
- a) $H_2(g)$
- b) Zn(s)
- c) $P_4(s)$
- d) $S_8(s)$
- e) $H_2S(g)$
- f) CO(g)
- g) SO₂(g)
- h) I-(aq)
- i) H₂O
- j) CH₄(g)
- 21) ICl₃ kommt als Dimer vor. Welche Struktur hat dieses Molekül gemäß dem VSEPR-Modell?
- 22) Erläutern Sie die biologische Bedeutung der Halogenide F-, Cl-, Br- und l-!
- 23) Erklären Sie den cariostatischen Effekt von Fluorid in Zahnpflegemitteln!
- 24) Welche technische Anwendung haben folgende Verbindungen der Halogene?
- a) $BrF_3(I)$
- b) CIF₃(g)
- c) CCI₄(I)
- d) LiF(s)
- e) $MgF_2(s)$
- f) KBr(s)
- g) CF₄(g)
- h) $CIO_2(g)$

Prof. Dr. T. Jüstel Anorganische Chemie I