Inkohärente Lichtquellen

Inhalt

- 1. Historische Einleitung
- 2. Lichttechnische Begriffe
- 3. Physikalische Konzepte zur Lichterzeugung
- 4. Glüh- und Halogenlampen
- 5. Niederdruckentladungslampen
- 6. Hochdruckentladungslampen
- 7. Leuchtstoffe
- 8. Lumineszenzmechanismen
- 9. Anorganische LEDs
- 10. OLEDs und PLEDs
- 11. Gasentladungsbildschirme
- 12. UV-Strahlungsquellen

Geschichte der Lichterzeugung

vor 1.37·10¹⁰ Jahren

vor 1.3·10¹⁰ Jahren

vor 1·10⁹ Jahren

vor 400000 Jahren

vor 13000 Jahren

5000 v. Chr.

1000 v. Chr.

600 v. Chr.

280 v. Chr.

1608

1668

1772

1783

1784

1826

Urknall

Sterne, Galaxien, Quasare

Biolumineszenz

Fackel

Primitive Steinlampen

Fettlampen mit Docht

Kerzen

Ölkeramiklampen

Erster Leuchtturm (Alexandria)

Teleskop (**Refraktor**)

Speigelteleskop

Gaslampen

Petroleumlampen

Argandlampe (Lampe mit Hohldocht)

Kalklicht (Limelight, CaO-Brenner) "Thermolumineszenz"

Geschichte der Lichterzeugung

Kölnische Zeitung, 28. März 1819

"Jede Straßenbeleuchtung ist verwerflich"

Aus theologischen Gründen, weil sie als Eingriff in die Ordnung Gottes erscheint. Die Nacht darf nicht in den Tag verkehrt werden.

Aus juristischen Gründen, weil die Kosten dieser Beleuchtung durch eine indirekte Steuer aufgebracht werden sollen.

Aus medizinischen Gründen, die Gasausdünstung wirkt nachteilig auf die Gesundheit schwachleibiger oder zartherziger Personen.

Aus philosophisch-moralischen Gründen, die Sittlichkeit wird durch Gassenbeleuchtung verschlimmert. Die künstliche Helle verscheucht in den Gemüthern das Grauen vor der Finsternis.

Aus polizeilichen Gründen, sie macht die Pferde scheu und die Diebe kühn.

Geschichte der elektrischen Lichterzeugung

Goebel	Glühlampe mit Bambusfaser
Geißler	Hg-Gasentladung
Becquerel	Fluoreszenzlampe
Swan & Edison	Glühlampe mit Kohlefaden (Ediswan)
Cooper & Hewitt	Patent auf Hg-Dampflampe
Germer	Niederdruckentladungslampe mit Leuchtstoffen
Destriau	Indirekte Elektrolumineszenz
Claude	Ne-Entladungslampe mit CaWO ₄ + Zn ₂ SiO ₄ :Mn
GE	Fluoreszenzlampen mit $MgWO_4 + (Zn,Be)_2SiO_4:Mn$
	Halophosphatlampe
	Geißler Becquerel Swan & Edison Cooper & Hewitt Germer Destriau Claude

Halogenlampe

Halbleiter LED

1961 Biard & Pitman

1971 Koedam & Opstelten

1980

1959

Dreibandenkonzept Kompakte Fluoreszenzlampe

(Energiesparlampe)

Geschichte der	elektrischen	Lichterzeugung

Ocscine	inc der elektrischen Lien	terzeugung	Fraunhofer-Gesellschaft Deutschland
1990	Friend & Burroughes	Erste organische LED	110
1993	Nakamura	Hocheffiziente blaue (In,Ga)N LED	
1995	Schnick	Nitridische Leuchtstoffe	Z Z Z Z
1996	Nichia/Osram	Weiße LED auf Basis von (In,Ga)N LED +	YAG:Ce
2000		Weiße LEDs effizienter als Glühlampen	
2004	Nichia/Osram/Philips	Warmweiße LED mit (Ca,Sr)S:Eu oder Sr ₂	Si ₅ N ₈ :Eu
2004	Mitsubishi	Tiefroter Leuchtstoff CaAlSiN ₃ :Eu	
2006	Nichia	Kaltweiße LED mit 100 lm/W bei 20 mA	
2007	Nichia	Kaltweiße LED mit 160 lm/W bei 20 mA	
2010	CREE	Kaltweiße LED mit 208 lm/W bei 20 mA	
2011	Mitsubishi	Gelber Nitridleuchstoff La ₃ Si ₆ N ₁₁ :Ce	
2012	Epistar	Warmweiße LED mit 216 lm/W bei 5 mA	
2013	CREE	Kaltweiße LED mit 276 lm/W bei 20 mA	
2014	CREE	Kaltweiße LED mit 303 lm/W bei 20 mA	
2015	UNESCO	International Year of Light (IYL2015)	
2016	Light & Building FFM	LED dominiert den Beleuchtungsmarkt	
2019	UNESCO	International Year of the Periodic Table (I	YPT2019)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel Historische Einleitung Folie 5

Geschichte der Bildschirmtechnologie

• 1875 George Carey Erstes Konzept zur Realisierung von TV

1884 Paul Nipkow Erstes praxistaugliches TV-Gerät

1897 Braun Braun'sche Röhre

1926 Philo Farnsworth Erste öffentliche TV-Übertragung

1928 A. Hovhannes, J. Blaird Farb-TV

• 1971 James Fergason LCDs

1977 Gasentladungsdisplays (monochrom)

1999 Philips Monochromes PolyLED Display

2000 iFire 17" ACTFEL Display

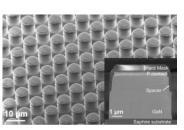
2004 iFire 34" ACTFEL Display

2006 200 und 300" Plasma Displays

LED Backlit LCDs

Flexibles 125" Plasma Display

4K Heimprojektor (3840 x 2160 pixel)


8K 145" LCD-Display (7680 x 4320 pixel)

40" μ-LED Display (6,220,800 sub-pixel)

75" μ-LED 4K Display

• 2019 Samsung

Inkohärente Lichtquellen
Prof. Dr. T. Jüstel, FH Münster

2012 Sony

2016 Sony

2009 Shinoda Plasma

2012 NHK/Panasonic

2008

Kapitel Historische Einleitung Folie 6

Lichtquellen und Beleuchtung in 2020

- Innenraumbeleuchtung
 - \rightarrow Halogenglühlampen \rightarrow Energiesparlampen \rightarrow LEDs
- Öffentliche Gebäude, Geschäftsräume, Fabriken
 - \rightarrow Leuchtstoffröhren \rightarrow LEDs

 \rightarrow Natriumlampen \rightarrow Hg-Hochdrucklampen, LEDs

- → Leuchtstoffröhren → LEDs
- Signalbeleuchtung
 - \rightarrow Glühlampen mit Farbfilter \rightarrow LEDs \rightarrow Laserdioden
- KFZ-Beleuchtung
 - \rightarrow Halogenlampen \rightarrow Xe/Hg/Zn-Lampen \rightarrow LEDs \rightarrow Laserdioden

1. Historische Einleitung: Stand der Dinge 2020

Light source	Electrical input power [W]	Luminous flux [lm]	Luminous efficacy [lm/W]	Color rendering range
ncandescent	10 – 1000	80 – 15000	8 – 15	excellent
Halogen	20 – 2000	300 – 60000	15 – 35	excellent
Low-pressure Hg discharge	7 – 150	350 – 15000	50 – 100	good
High-pressure Hg discharge	50 – 1000	2000 – 60000	40 – 60	good
Metal-halide discharge	20 – 2000	1600 – 24000	80 – 120	good to excellent
Low-pressure Na discharge	20 – 200	2000 – 40000	100 – 200	poor
High-pressure Na discharge	40 – 1000	1600 – 14000	40 – 140	moderate to good
Low pressure Xe /Ne discharge	< 1000	< 40000	35 - 45 (lamps) 4 - 5 (PDPs)	good
White dichromatic norganic LED	1 – 5	20 – 500	100 – 300	good
White trichromatic norganic LED	1 – 5	20 – 200	40 – 160	excellent
Organic LED (at 1000 cd/m²)	15 mW (per cm²)	0.25 lm (per cm²)	20 – 100	good

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kapitel Historische Einleitung Folie 8

Literaturhinweise

Bücher/Buchkapitel

- K.H. Butler, Fluorescent Lamp Phosphors, University Park, PA (1980)
- A.H. Kitai, Solid State Luminescence, Chapman & Hall, London (1993)
- G. Blasse, B.C. Grabmeier, Luminescent Materials, Springer Verlag Berlin Heidelberg (1994)
- W. Schmidt, Optische Spektroskopie, VCH (1995)
- J.R. Coaton, A.M. Marsden, Lamps and Lighting, Arnold, London (1997)
- D.R. Vij, Luminescence of Solids, Plenum Press, New York and London (1998)
- S. Shinoya, W.M. Yen, Phosphor Handbook, CRC Press (1999)
- A. Zukauskas, M.S. Shur, R. Caska, Introduction to Solid-State Lighting, John Wiley & Sons, Inc. (2002)
- E.F. Schubert, Light Emitting Diodes, Cambridge Univ. Press (2003)
- C.R. Ronda, Luminescence, Wiley-VCH (2008)
- R.-J. Yie, H. Yamamoto, Nitride Phosphors and Solid-State Lighting, CRC Press (2011)

Literaturhinweise

Publikationen

- M. Bredol, U. Kynast, C.R. Ronda, Designing Luminescent Materials, Adv. Mater. 3 (1991) 361
- M. Bredol, U. Kynast, C.R. Ronda, Leuchtstoffe für Kathodenstrahlröhren, Chemie in unserer Zeit 28 (1994) 36
- T. Jüstel, H. Nikol, C.R. Ronda, New Developments in the Field of Phosphors for Lighting and Display Applications, Angew. Chem. 110 (1998) 3250
- T. Jüstel, C. Feldmann, C.R. Ronda, Leuchtstoffe für emissive Displays, Phys. Bl. 56 (2000) 51
- T. Jüstel, J.-C. Krupa, D.U. Wiechert, VUV Spectroscopy of Luminescent Materials for Plasma Display Panels and Xe Discharge Lamps, J. Luminescence 93 (2001) 179
- M. Born, T. Jüstel, Umweltfreundliche Lichtquellen, Physik Journal 2 (2003) 43
- M. Born, T. Jüstel, Chemie und Lichtquellen, Chemie in unserer Zeit 40 (2006) 294
- T. Jüstel, S. Möller, H. Winkler, Luminescent Materials in Ullmann's Encyclopedia of Technical Chemistry (2012)
- T. Jüstel, Anorganische Leuchtstoffe und LEDs, CHEManager 5 (2017) 9