Exercises Luminescence Mechanisms

- 1. Please explain the position of the energy level of an activator, a sensitizer, an ionization level and the donor and acceptor position for a host material with the band gap E_G by the help of an energy schema in the location domain!
- 2. Please sketch the dependence of the quantum yield (QY) of a luminescent material as a function of concentration of the activator ion! Explain the phenomenon of concentration quenching by the help of a graph! What is meant by internal and external QY?
- 3. Please explain the term sensitisation with a self-imposed example!
- 4. Please name three options for sensitisation of a trivalent activator taken from the lanthanide series!
- 5. Please explain the importance of lanthanide ions as activators in many phosphors.
- 6. Please differentiate the terms energy transfer and charge transfer.
- 7. Please name the dominant luminescence mechanism causing the photoluminescence of the following activators moieties:
 - a. Cr³⁺
 - b. Sn²⁺
 - c. Ce³⁺
 - d. Sm³⁺
 - e. Eu³⁺
 - f. Eu²⁺
 - g. Gd³⁺
 - h. Yb³⁺
 - i. WO4²⁻
 - j. Mn⁴⁺
- 8. Please explain the relative position of CT-level and the lowest crystal field component of the [Xe]4fⁿ⁻¹5d¹ configuration for the lanthanide ions Eu²⁺ and Eu³⁺ as a function of the chemical environment!

- 9. The afterglow pigment Sr₄Al₁₄O₂₅:Eu,Dy should be modified so that the afterglow occur only at a temperature which is significantly above room temperature. Propose a suitable co-dopant and explain your proposal by the aid of an energy level diagram!
- 10. You should develop a green emitting luminescent material for the use as a converter in blue emitting LEDs (440-480 nm). Which activator and host lattice could be used? Which physical methods do you use to characterise the newly developed luminescent material with the aim of improving the quality?
- 11. You have the red emitting luminescent materials (Y,Gd)BO₃:Eu, Y₂O₃:Eu, Y₂O₂S:Eu, YVO₄:Eu, Sr₂Si₅N₈:Eu, CaAlSiN₃:Eu and CaS:Eu at hand. Which of these materials is suitable for the use in fluorescent lamps, plasma TV, or inorganic LEDs?
- 12. Please explain the term afterglow pigment! Why Eu²⁺ phosphors exhibit particularly common afterglow? Please explain this by the help of an energy level scheme!
- 13. What is meant by the term "storage phosphors"? Name an example!
- 14. Which activator ion would you choose to dope a YAG crystal to obtain a material with emission in UV-B, in UV-A, in the blue, in the green, in the red or in the near or the mid infrared spectral range?
- 15. Please explain the term down-conversion and propose a well justified activator for such a process.
- 16. Up-conversion is the emission of a higher energetic photon after the absorption of a lower energetic photon. Please explain this process by the aid of the following physical phenomena:
 - a. Anti-Stokes-Raman
 - b. Excited State Absorption
 - c. Energy transfer up-conversion
 - d. Sensitized energy transfer up-conversion