# **Analytische Chemie**

### B. Sc. Chemieingenieurwesen

4. Juli 2020, 15 bis 18 Uhr

## Dr. Stephanie Möller, Prof. Dr. Thomas Jüstel

| Name:           | <br> | <del></del> |
|-----------------|------|-------------|
| Matrikelnummer: | <br> |             |
| Geburtsdatum:   |      |             |

Sowohl der Lösungsweg als auch die Endergebnisse sind korrekt und nachvollziehbar anzugeben. Versehen Sie alle Größen mit SI-Einheiten. Bei Grafiken sind die Achsen ordnungsgemäß zu beschriften. Richten Sie alle Reaktionsgleichungen vollständig mit ganzzahligen Koeffizienten ein. Sofern bei einer Reaktion charakteristische Beobachtungen (Farbe, Niederschlag, Gasentwicklung, usw.) typisch sind, sollen diese kurz beschrieben werden. Bitte verwenden Sie für die Lösung nur diese Aufgabenblätter (notfalls auch die Rückseite)!

Dauer der Prüfung: 180 Minuten

Hilfsmittel: nicht-programmierbarer Taschenrechner

Formelsammlung und Periodensystem (im Anhang)

| Noter | ıskala                                                      |
|-------|-------------------------------------------------------------|
| 1,0   | 95 – 100 Punkte                                             |
| 1,3   | 90 – 94 Punkte                                              |
| 1,7   | 85 – 89 Punkte                                              |
| 2,0   | 80 – 84 Punkte                                              |
| 2,3   | 75 – 79 Punkte                                              |
| 2,7   | 70 – 74 Punkte                                              |
| 3,0   | 65 – 69 Punkte                                              |
| 3,3   | 60 – 64 Punkte                                              |
| 3,7   | 55 – 59 Punkte                                              |
| 4,0   | 50 – 54 Punkte                                              |
| 5,0   | 0 – 49 Punkte                                               |
|       | 1,3<br>1,7<br>2,0<br>2,3<br>2,7<br>3,0<br>3,3<br>3,7<br>4,0 |

#### <u>Aufgabe 1:</u> Löslichkeit, Löslichkeitsprodukt und Stöchiometrie

20 Punkte

- a) Stellen Sie die Gleichung für das Lösungsgleichgewicht eines Salzes der allgemeinen Zusammensetzung  $A_3B_4$  auf! Wie lautet die Gleichung für  $K_L$  und welche Einheit hat  $K_L$ ? Wie wird der  $pK_L$ -Wert berechnet? (4 Punkte)
- b) In 80 ml Wasser lösen sich 4,99  $\mu$ g (Mikrogramm) Cadmiumphosphat. Wie groß sind das Löslichkeitsprodukt und der pK<sub>L</sub>-Wert? (4 Punkte) Ergibt eine Lösung von Cadmiumhydroxid (Löslichkeit 27 mg/l) bezogen auf die Konzentration an aquatisierten Cadmiumkationen in mol/l eine höher oder niedriger konzentrierte Lösung? (3 Punkte)
- c) Vervollständigen Sie folgende Tabelle zur Löslichkeit von Salzen, indem Sie für jedes Salz (Ca(NO<sub>3</sub>)<sub>2</sub>, CaSO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, Fe(NO<sub>3</sub>)<sub>2</sub> und FeSO<sub>4</sub> analog zum NaNO<sub>3</sub> in das jeweilige Feld der Tabelle für schwerlösliche Verbindungen ein S und für leichtlösliche Verbindungen ein L eintragen! (5 Punkte)

|                               | Ca <sup>2+</sup> | NH <sub>4</sub> <sup>+</sup> | Fe <sup>2+</sup> |
|-------------------------------|------------------|------------------------------|------------------|
| NO <sub>3</sub> -             |                  | L                            |                  |
| SO <sub>4</sub> <sup>2-</sup> |                  |                              |                  |

d) Wie groß ist der Massenanteil eines Minerals an Magnesium in %, wenn die Einwaage m(Mineral) = 1,1400 g und die Auswaage  $m(Mg_2P_2O_7) = 1,1996 g$  beträgt? (4 Punkte)

# <u>Aufgabe 2:</u> Redoxreaktionen

20 Punkte

Vervollständigen Sie die folgenden Redoxgleichungen!

(je 4 Punkte)

a)  $CH_3CH_2OH$  +  $MnO_4^-$  +  $H^+$   $\rightarrow$ 

b)  $Mn^{2+}$  +  $S_2O_8^{2-}$   $\rightarrow$  +  $H^+$ 

c)  $Mn^{2+}$  +  $H_2O_2$  +  $OH^ \rightarrow$ 

d)  $I_2$  +  $S_2O_3^{2-}$   $\rightarrow$ 

e)  $PbO_2$  +  $Cl^-$  +  $H^+$   $\rightarrow$ 

- a) Welche Masse (in g) an Natriumacetat müssen Sie zu 250 ml einer zweimolaren Essigsäure geben, um einen Puffer mit dem pH-Wert 4,9 herzustellen? (pKs(Essigsäure) = 4,75; Volumeneffekte sind zu vernachlässigen) (4 Punkte)
- b) Erläutern Sie anhand von Reaktionsgleichungen, ob sich die Lösungen von NaCl, CH<sub>3</sub>COONa und NH<sub>4</sub>Cl sauer, neutral oder alkalisch verhalten! (6 Punkte)

#### **Aufgabe 4:** Gravimetrie

10 Punkte

- a) Erläutern Sie den Begriff ,homogene Präzipitation'! Wie können Sie Sulfid- und wie Hydroxidanionen homogen in Lösung erzeugen? Geben Sie jeweils ein Beispiel inklusive Reaktionsgleichungen an! (5 Punkte)
- b) Nennen und erläutern Sie drei Mitreißeffekte!

(3 Punkte)

c) Wie können Mitreißeffekte verhindert werden? Nennen Sie zwei Maßnahmen, die zusätzlich zur homogenen Präzipitation angewendet werden können!

(2 Punkte)

#### **Aufgabe 5:** Volumetrie

10 Punkte

| Bitte ergänzen Sie die entsprechenden Informationen in den Lücken!                            |
|-----------------------------------------------------------------------------------------------|
| Sie werden aufgefordert, den Gehalt einer Salzsäure mit einer Konzentration von ca. 0,1 mol/l |
| mithilfe einer Natriumhydroxid-Lösung zu bestimmen. Diese Natriumhydroxidlösung können        |
| Sie nicht direkt herstellen, weil Natriumhydroxid nicht wägestabil und deshalb keine          |
| g Natriumhydroxid auf 1 Liter                                                                 |
| Wasser ergibt eine Konzentration von etwa 0,1 mol/l. Für die exakte Bestimmung der            |
| Konzentration der Natronlauge und die Ermittlung des muss daher                               |
| zum Beispiel auf Benzoesäure zurückgegriffen werden. Unter der Annahme, dass eine Bürette     |
| mit dem Volumen von 20 ml zur Verfügung steht und der Umschlag bei 15 ml erfolgen soll,       |
| müssen je Erlenmeyerkolben etwa mg Benzoesäure* auf der Analysenwaage                         |
| eingewogen werden. Als Indikator kann z.B. Phenolphthalein verwendet werden.                  |

Die Tabelle zeigt Soll- und Istverbräuche für eine Dreifachbestimmung. Geben Sie die Formel zur Ermittlung des Korrekturfaktors an und ermitteln Sie diesen!

#### <u>Formel:</u>

| V(soll) in ml | V(ist) in ml | Korrekturfaktor | Mittelwert |
|---------------|--------------|-----------------|------------|
| 14,95         | 15,02        |                 |            |
| 14,90         | 14,95        |                 |            |
| 15,05         | 15,15        |                 |            |

Der ermittelte Korrekturfaktor ist ...... als 1. Dies bedeutet, dass die tatsächliche Konzentration der Natronlauge ...... als die Nenn- bzw. Sollkonzentration ist.

<sup>\*</sup>Falls Sie die exakte molare Masse von Benzoesäure nicht ermitteln können, nutzen Sie bitte 120 g/mol für die Berechnung der Einwaage.

### **<u>Aufgabe 6:</u>** Einzelnachweise

10 Punkte

Geben Sie eine vollständige Nachweisreaktion inklusive der typischen Beobachtung (Niederschlag, Farbe, Gasentwicklung, usw.) für die folgenden Ionen an!

(jeweils 2 Punkte)

- a) Titan(IV)-Kation
- b) Blei(II)-Kation
- c) Borat-Anion
- d) Kalium-Kation
- e) Mangan(II)-Kation

# Aufgabe 7: Kationennachweise

10 Punkte

Eine Lösung enthält die Ionen Hg<sub>2</sub><sup>2+</sup>, Cu<sup>2+</sup>, Ca<sup>2+</sup> und Sr<sup>2+</sup>.

Erläutern Sie mithilfe des Kationentrennungsgangs, wie diese Ionen voneinander separiert werden können! Geben Sie für alle vier Kationen jeweils eine Nachweisreaktion mit der entsprechenden Reaktionsgleichung an. (10 Punkte)

| Aui | gabe  | b. Destininang einer unbekannten Substanz                                                                                                                                                                                             | 10 Fullikte                  |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| a)  |       | velche Verbindung (Name + Formel) handelt es sich bei einer unbekan<br>velche die untenstehenden Befunde notiert wurden?                                                                                                              | nten Substanz,<br>(2 Punkte) |
| b)  |       | en Sie jeweils die Reaktionsgleichungen zur Erklärung der unten bestehnde an!                                                                                                                                                         | nenden<br>(je 2 Punkte)      |
| Bef | unde: |                                                                                                                                                                                                                                       |                              |
|     | 1.    | Eine Probe der erhaltenen Substanz ist in Wasser löslich. Unter Zugalt Tropfen Salzsäure bildet sich ein weißer Niederschlag, der beim Erhit verschwindet. Wird diese Lösung in Eiswasser abgekühlt, entsteht wi weißer Niederschlag. | zen                          |
|     | 2.    | Beim Einleiten von Schwefelwasserstoff in das salzsaure Filtrat von (1 schwarze Trübung.                                                                                                                                              | L) entsteht eine             |
|     | 3.    | Wird die essigsaure Lösung der Ursubstanz mit Kaliumchromat-Lösur<br>bildet sich ein schwerlöslicher, gelber Niederschlag.                                                                                                            | ng versetzt,                 |
|     | 4.    | Verreibt man die Ursubstanz mit Kaliumhydrogensulfat, nimmt man stechenden Geruch wahr.                                                                                                                                               | einen                        |

#### Formeln und Konstanten

Formeln:

Energie:  $E = m \cdot c^2 = h \cdot v$ 

Allgemeine Gasgleichung: pV = nRT

Ionenladungsdichte:  $ILD = \frac{z \cdot e}{4/2\pi \cdot r^3}$  z Ladungszahl des Ions

Gleichgewichtskonstante:  $K = \frac{c^c(C) \cdot c^d(D)}{c^a(A) \cdot c^b(B)}$   $a A + b B \rightleftharpoons c C + d D$ 

Dichte:  $\rho = \frac{m}{V}$ 

Molare Masse:  $M = \frac{m}{n}$ 

Stoffmengenkonzentration:  $c = \frac{n}{\nu}$ 

Massenkonzentration:  $\beta = \frac{m}{V}$ 

Massenanteil:  $w = \frac{a \cdot F}{e} \cdot 100 \%$ 

Titerfaktor:  $t = F = \frac{c_{ist}}{c_{soll}}$ 

Stöchiometrischer Faktor:  $F = \frac{M(\textit{Analyt})}{M(\textit{Wägeprodukt})} \qquad \text{(auch gravimetrischer Faktor)}$ 

Ionenprodukt des Wassers:  $c(H^+) \cdot c(OH^-) = 10^{-14} \left(\frac{mol}{l}\right)^2 \Leftrightarrow pH + pOH = 14$ 

pH-Wert:  $pH = -\log(c(H^+))$ 

pOH-Wert:  $pH = -\log(c(OH^{-}))$ 

pH-Werte von Säuren:  $pH = -\log\left(c_0(HA) + 10^{-7}\right)$  sehr stark mit pKs < -1,74

 $pH = -\log\left(-\frac{K_{S}}{2} + \sqrt{\frac{K_{S}^{2}}{4} + K_{S} \cdot c_{0}(HA)}\right)$  stark mit -1,74 < pK<sub>S</sub> < 4,5

 $pH = \frac{1}{2} (pK_S - \log(c_0(HA)))$  mittelstark mit 4,5 < pK<sub>S</sub> < 9,5

 $pH = -\frac{1}{2} \cdot \log(K_S \cdot c_0(HA) + K_W)$  (sehr) schwach mit pK<sub>S</sub> > 9,5

Henderson-Hasselbalch-Gleichung  $pH = pK_S + log \frac{c(A^-)}{c(HA)}$ 

#### Konstanten:

Avogadro-Konstante:  $N_A = 6,022 \cdot 10^{23} \ mol^{-1}$ 

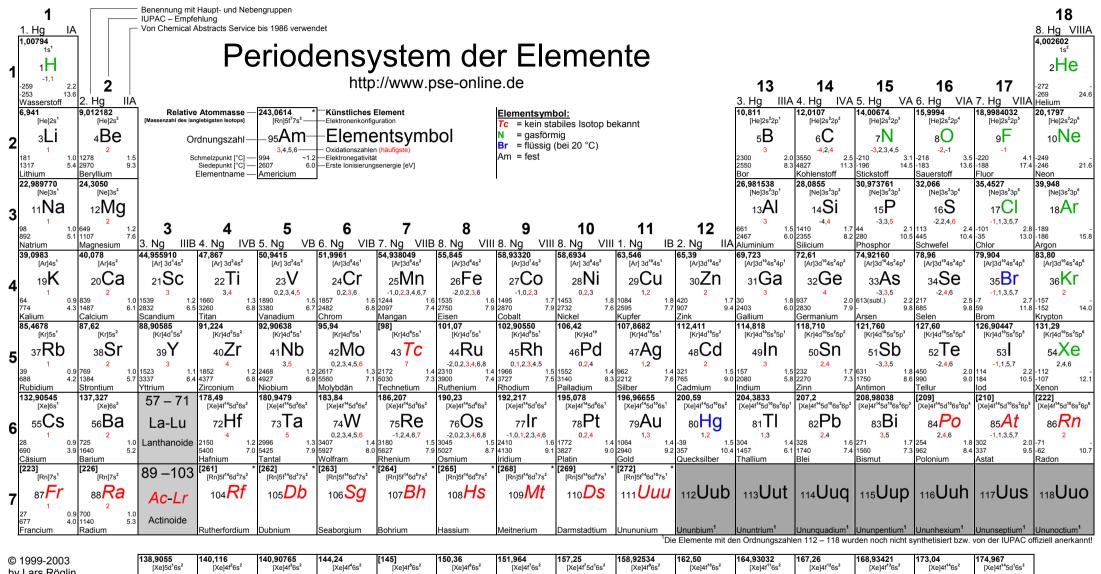
Elementarladung:  $e = 1,602 \cdot 10^{-19} C$ 

Faraday-Konstante:  $F = 96.485 \frac{c}{mol}$ 

Ionenprodukt des Wassers:  $K_w = 10^{-14} \frac{mol^2}{l^2}$ 

Lichtgeschwindigkeit:  $c = 2,9979 \cdot 10^8 \frac{m}{s}$ 

Molares Volumen eines idealen Gases:  $V_m = 22.4 \frac{l}{mol}$  (bei Normbedingungen)


Universelle Gaskonstante:  $R = 8,3145 \frac{J}{mol \cdot K}$ 

### pK<sub>S</sub>- und pK<sub>B</sub>-Werte ausgewählter Säuren und Basen

|          | Name                 | Säure                           | Base + H <sup>+</sup>                       | pKs   | рК <sub>в</sub> |
|----------|----------------------|---------------------------------|---------------------------------------------|-------|-----------------|
| Sehr     | Perchlorsäure        | HClO <sub>4</sub>               | ClO <sub>4</sub> <sup>-</sup>               | ≈ -10 | ≈ 24            |
| starke   | Bromwasserstoff      | HBr                             | Br <sup>—</sup>                             | ≈ -9  | ≈ 23            |
| Säuren   | Chlorwasserstoff     | HCl                             | CI <sup>-</sup>                             | ≈ -6  | ≈ 20            |
|          | Schwefelsäure        | H <sub>2</sub> SO <sub>4</sub>  | HSO <sub>4</sub> <sup>-</sup>               | ≈ -3  | ≈ 17            |
|          | Hydronium-Ion        | H₃O <sup>+</sup>                | H <sub>2</sub> O                            | -1,74 | 15,74           |
| Starke   | Salpetersäure        | HNO <sub>3</sub>                | NO <sub>3</sub> <sup>-</sup>                | -1,32 | 15,32           |
| Säuren   | Hydrogensulfat-Ion   | HSO <sub>4</sub> <sup>-</sup>   | SO <sub>4</sub> <sup>2</sup> -              | 1,92  | 12,08           |
|          | Phosphorsäure        | H <sub>3</sub> PO <sub>4</sub>  | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | 1,96  | 12,04           |
| Mittel-  | Essigsäure           | CH₃COOH                         | CH₃COO <sup>—</sup>                         | 4,75  | 9,25            |
| starke   | Schwefelwasserstoff  | H <sub>2</sub> S                | HS <sup>-</sup>                             | 6,92  | 7,08            |
| Säuren   | Ammonium-Ion         | NH <sub>4</sub> <sup>+</sup>    | NH <sub>3</sub>                             | 9,25  | 4,75            |
| Schwache | Hydrogencarbonat-Ion | HCO₃ <sup>-</sup>               | CO <sub>3</sub> <sup>2-</sup>               | 10,40 | 3,6             |
| Säuren   | Hydrogenphosphat-Ion | HPO <sub>4</sub> <sup>2</sup> - | PO <sub>4</sub> <sup>3-</sup>               | 12,32 | 1,68            |
|          | Hydrogensulfid-Ion   | HS <sup>-</sup>                 | S <sup>2-</sup>                             | 12,90 | 1,10            |
| Sehr     | Wasser               | H <sub>2</sub> O                | OH <sup>-</sup>                             | 15,74 | -1,74           |
| schwache | Hydroxid-Ion         | OH <sup>-</sup>                 | O <sup>2-</sup>                             | ≈ 24  | ≈ -10           |
| Säuren   | Wasserstoff          | H <sub>2</sub>                  | H <sup>-</sup>                              | ≈ 40  | ≈ -26           |

#### Säure-Base-Indikatoren (//// Umschlagbereich)

| Kresolrot        | rot | rot /////// ge         |      |    |  |      |       | //////// violett |   |        |    |      |    |    |    |
|------------------|-----|------------------------|------|----|--|------|-------|------------------|---|--------|----|------|----|----|----|
| Methylorange     |     | rot /////// gelb       |      |    |  |      |       |                  |   |        |    |      |    |    |    |
| Bromkresolgrün   |     | gelb /////// blau      |      |    |  |      |       |                  |   |        |    |      |    |    |    |
| Methylrot        |     | rot /////// gelb       |      |    |  |      |       |                  |   |        |    |      |    |    |    |
| Lackmus          |     | r                      | ot   |    |  | //// | ///// | blau             |   |        |    |      |    |    |    |
| Bromkresolpurpur |     | gelb /////// violett   |      |    |  |      |       |                  |   |        |    |      |    |    |    |
| p-Nitrophenol    |     | far                    | blos |    |  | //// | ///// |                  |   |        | ٤  | gelb |    |    |    |
| Bromthymolblau   |     |                        | ge   | lb |  |      | ////  | /////            |   |        |    | blau |    |    |    |
| Phenolphthalein  |     | farblos /////// violet |      |    |  |      |       |                  |   | iolett | :  |      |    |    |    |
| Thymolphthalein  |     | farblos /////// blau   |      |    |  |      |       |                  |   | au     |    |      |    |    |    |
| Alizaringelb R   |     | gelb /////// r         |      |    |  |      |       |                  |   | rot    |    |      |    |    |    |
| Ha               | 0   | 1 2                    | 3    | 4  |  | 5 6  | 5     | 7                | 8 | 9      | 10 | 11   | 12 | 13 | 14 |



| by Lars Roglin                                 |
|------------------------------------------------|
| lars@pse-online.de<br>http://www.pse-online.de |

|   | 138,9055<br>[Xe]5d <sup>1</sup> 6s <sup>2</sup> | 140,116<br>[Xe]4f <sup>2</sup> 6s <sup>2</sup> | 140,90765<br>[Xe]4f <sup>3</sup> 6s <sup>2</sup>             | 144,24<br>[Xe]4f <sup>4</sup> 6s <sup>2</sup>                | [145]<br>[Xe]4f <sup>5</sup> 6s <sup>2</sup>                 | 150,36<br>[Xe]4f <sup>6</sup> 6s <sup>2</sup> | 151,964<br>[Xe]4f <sup>7</sup> 6s <sup>2</sup> | <b>157,25</b> [Xe]4f <sup>7</sup> 5d <sup>1</sup> 6s <sup>2</sup> | 158,92534<br>[Xe]4f <sup>9</sup> 6s <sup>2</sup> | 162,50<br>[Xe]4f <sup>10</sup> 6s <sup>2</sup>    | 164,93032<br>[Xe]4f <sup>11</sup> 6s <sup>2</sup> | 167,26<br>[Xe]4f <sup>12</sup> 6s <sup>2</sup>  | 168,93421<br>[Xe]4f <sup>13</sup> 6s <sup>2</sup> | 173,04<br>[Xe]4f <sup>14</sup> 6s <sup>2</sup>  | <b>174,967</b> [Xe]4f <sup>14</sup> 5d <sup>1</sup> 6s <sup>2</sup> |
|---|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|
| 6 | 57 <b>La</b>                                    | 58 <b>Ce</b>                                   | 59 <b>Pr</b>                                                 | 60 <b>Nd</b>                                                 | 61 <b>Pm</b>                                                 | 62Sm                                          | 63Eu                                           | $_{64}Gd$                                                         | 65 <b>Tb</b>                                     | 66 <b>Dy</b>                                      | 67 <b>HO</b>                                      | 68 <b>Er</b>                                    | 69 <b>Tm</b>                                      | 70 <b>Yb</b>                                    | 71Lu                                                                |
| _ | 920 1. <sup>-</sup>                             | 3,4<br>1 798 1.                                | 3,4<br>1 931 1.1                                             | 3<br>1010 1.1                                                | 3<br>1080 1.1                                                | 2, <b>3</b><br>1072 1.1                       | 2, <mark>3</mark><br>822 1.0                   | 3<br>1311 1.1                                                     | 3,4<br>1360 1.1                                  | 1 1406                                            | 3<br>1470 1.1                                     | 3<br>1522 1.1                                   | 2, <b>3</b><br>1545 1.1                           | 2, <mark>3</mark><br>824 1.1                    | 3<br>1656 1.1                                                       |
|   | 3454 5.6<br>Lanthan                             | 6 3257 5.9<br>Cer                              | 5 3212 5.4<br>Praseodym                                      |                                                              |                                                              | 1778 5.6<br>Samarium                          | 1597 5.7<br>Europium                           | 3233 6.1<br>Gadolinium                                            | 3041 5.9<br>Terbium                              |                                                   | 2720 6.0<br>Holmium                               |                                                 |                                                   |                                                 | 3315 5.4<br>Lutetium                                                |
|   | [227]<br>[Rn]6d <sup>1</sup> 7s <sup>2</sup>    | [232]<br>[Rn]6d <sup>2</sup> 7s <sup>2</sup>   | [231]<br>[Rn]5f <sup>2</sup> 6d <sup>1</sup> 7s <sup>2</sup> | [238]<br>[Rn]5f <sup>3</sup> 6d <sup>1</sup> 7s <sup>2</sup> | [237]<br>[Rn]5f <sup>4</sup> 6d <sup>1</sup> 7s <sup>2</sup> | [244]<br>[Rn]5f <sup>6</sup> 7s <sup>2</sup>  | [243] *<br>[Rn]5f <sup>7</sup> 7s <sup>2</sup> | [247] *<br>[Rn]5f <sup>7</sup> 6d <sup>1</sup> 7s <sup>2</sup>    | [247] '<br>[Rn]5f <sup>9</sup> 7s <sup>2</sup>   | * [251] *<br>[Rn]5f <sup>10</sup> 7s <sup>2</sup> | [252] *<br>[Rn]5f <sup>11</sup> 7s <sup>2</sup>   | [257] *<br>[Rn]5f <sup>12</sup> 7s <sup>2</sup> | [258] *<br>[Rn]5f <sup>13</sup> 7s <sup>2</sup>   | [259] *<br>[Rn]5f <sup>14</sup> 7s <sup>2</sup> | [262] *<br>[Rn]5f <sup>14</sup> 6d <sup>1</sup> 7s <sup>2</sup>     |
| 7 | 89 <b>A</b> C                                   | 90 <b>Th</b>                                   | 91 <b>Pa</b>                                                 | 92 <b>U</b>                                                  | 93 <b>Np</b>                                                 | 94 <b>Pu</b>                                  | 95 <b>A</b> m                                  | 96 <b>Cm</b>                                                      | 97 <b>BK</b>                                     | 98 <b>Cf</b>                                      | 99 <b>Es</b>                                      | 100 <b>Fm</b>                                   | 101 <b>Md</b>                                     | 102 <b>NO</b>                                   | <sub>103</sub> Lr                                                   |
| ′ | 3                                               | 4                                              | 4,5                                                          | 3,4,5,6                                                      | 3,4,5,6                                                      | 3,4,5,6                                       | 3,4,5,6                                        | 3,4                                                               | 3,4                                              | 3,4                                               | 3                                                 | 3                                               | 3                                                 | 2,3                                             | 3                                                                   |
|   |                                                 |                                                |                                                              |                                                              |                                                              |                                               |                                                | 1340 ~1.2<br>3100                                                 | 986 ~1.2                                         | 2 900 ~1.2                                        | 860 ~1.2                                          | ~1.2                                            | ~1.2                                              |                                                 |                                                                     |
|   | Actinium                                        | Thorium                                        | Protactinium                                                 | Uran                                                         | Neptunium                                                    | Plutonium                                     | Americium                                      | Curium                                                            | Berkelium                                        | Californium                                       | Einsteinium                                       | Fermium                                         | Mendelevium                                       | Nobelium                                        | Lawrencium                                                          |