12. UV-Strahlungsquellen

Ctrl

<u>Inhalt</u>

- 12.1 Einteilung der UV-Strahlung
- 12.2 Eindringtiefe der UV-Strahlung
- 12.3 Photochemische Anwendungen
- 12.4 Biochemische Anwendungen
- 12.5 Natürliche UV-Strahlungsquellen
- 12.6 Künstliche UV-Strahlungsquellen
- 12.7 UV-Leuchtstoffe
- 12.8 Bräunungslampen
- 12.9 Psoriasislampen
- 12.10 Strahlungsquellen für Desinfektionszwecke
- 12.11 UV LEDs
- 12.12 Zusammenfassung

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kapitel UV-Strahlungsquellen Folie 1

12.1 Einteilung der UV-Strahlung

VUV	UV-C	UV-B	UV-A		
100 nm 200) nm 280	nm 320	nm 400 nm		
12.5 - 6.9 eV	6.2 – 4.5 eV	4.5 - 3.9 eV	3.9 – 3.1 eV		
Spaltung von H ₂ O und O ₂ in Radikale Ozonbildung Spaltung von C-C, C-H, C-O Bindungen	Anregung von C=C Bindungen Anregung der Nukleobasen Spaltung von O_3 , Cl O_2 und H_2O_2	Vitamin D Bildung Transkription von Reparaturenzymen Bildung von Melanosomen in der Haut	Photokatalytische Reaktionen Oxidation von Melanin in der Haut Zersetzung organischer Pigmente Aktivierung photokata- lytischer Pigmente		
Waverreinigung Photochemie	Desinfektion von Luft, H ₂ O und Oberflächen Photochemie	Behandlung von Haut- krankheiten (Psoriasis) Bräunung Photochemie	Wasser- und Luftreinigung mittels TiO ₂ Photokatalysator Bräunung Photochemie		
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster	Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH MünsterKapitel UV-Strahlungsquellen Folie 2				

12.2 Eindringtiefe der UV-Strahlung

12.2 Eindringtiefe der UV-Strahlung

In Materie

Rather low penetration depth: UV radiation works solely at the surface!

Chemische Bindung und Photonenengie

Energie von chemischen Bindungen ~ 10 – 1100 kJ/mol	E-E 100 – 500 kJ/mol	F-F 159 kJ/mol C-C 348 kJ/mol
	E=E 400 – 700 kJ/mol	O=O 498 kJ/mol C=C 648 kJ/mol
Energie von optischer Strahlung E = N _A hc/ λ = 119226/ λ [kJmol ⁻¹]	E=E 800 – 1100 kJ/mol	N≡N 946 kJ/mol C≡C 839 kJ/mol
	H-Brücken 10 - 160 kJ/mol Van-der-Waals 0.5 - 5 k.	HF > HO > HN J/mol
1200 kJ/mol ⁻¹ 600	300	150 75
Vakuum Ultraviolett Ultraviolett	Sichtbar	Nah Infrarot
100 nm 200	400	800 1600
(V)UV - VIS Strahlun	g kann also chemische Bin	dungen spalten
Inkahäranta Lichtauallan		Zanital UN Stucklunggan allan

Photolysereaktionen

- **Spaltung von Aziden** ٠ $M-N=N=N+hv(<300 \text{ nm}) \rightarrow M=N+N_2$ mit M = Cr, Mn, Fe, Ru etc.

- Homolytische Spaltung von Iod ٠ $I_2 + hv(520 \text{ nm}) \rightarrow 2 \text{ I}$
- Zersetzung von HgO ٠ $2 \text{ HgO} + \text{hv}(< 600 \text{ nm}) \rightarrow 2 \text{ Hg} + O_2$
- Zersetzung von Diazoverbindungen ٠ $R-CO-CH=N=N+hv(<350 \text{ nm}) \rightarrow R-CH=C=O+N_2$
- Isomerisierungen ٠ Praecalciferol + $hv(282 \text{ nm}) \rightarrow \text{Calciferol}$ (Vitamin D₃)
- Spaltung von Ameisensäure HCOOH ٠ $HCOOH + hv(< 260 \text{ nm}) \rightarrow CO + H_2O$

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel UV-Strahlungsquellen Folie 6

Effects on organic molecules

- Photoinitiated polymerisation K[Cr(NH₃)₂(NCS)₄] + 2 H₂O + hv → K[Cr(NH₃)₂(NCS)₃(OH)] + H₃O⁺ + NCS⁻ → Anionic Polymerisation of ethyl-α-cyanoacrylate by the addition of NCS⁻ as a chain starter
- Photoinduced formation of oximes

Inkohärente Lichtquellen

Prof. Dr. T. Jüstel, FH Münster

Kapitel UV-Strahlungsquellen
Folie 7

Effects on organic molecules

- Photooxidative initiated polymerisation
 Flow coat process as a step of the CRT production process
 (polyvinyl alcohole + ammonium dichromate)
 R-CH₂-OH + CrO₄²⁻ + hv(vis.) → R-CH=O → Polymerisation
- Photooxidative synthesis of organic molecules

Wasser- und Oberflächenreinigung mit VUV-Licht

1. Spaltung von Wasser in Radikale

 $\begin{array}{l} \mathrm{H_2O} + \mathrm{hv}(<200 \ \mathrm{nm}) \rightarrow \mathrm{OH^{\cdot}} + \mathrm{H^{\cdot}} \\ 2 \ \mathrm{OH^{\cdot}} \rightarrow \mathrm{H_2O_2} \\ 2 \ \mathrm{H_2O_2} \rightarrow 2 \ \mathrm{H_2O} + {}^{1}\mathrm{O_2} \end{array}$

2. Ozonbildung

$$3 \text{ O}_2 + \text{hv}(< 240 \text{ nm}) \rightarrow 2 \text{ O}_3$$

H₂O₂ und O₃ bauen organische Substanzen oxidativ ab

Desinfektion

Wasser, Luft und Oberflächen enthalten Mikroorganismen, wie Pilze, Bakterien, Protozoen und Viren

Abtötung der Mikroorganismen durch

- Hitze (> 80 120 °C)
- Chemikalien (Cl₂, ClO₂, O₃)
- UV-Strahlung (< 300 nm)

Der Effekt von UV-Strahlung beruht vor allem auf der Hemmung des Wachstums der Mikroorganismen

Desinfektion – Photobiochemie

Struktur von DNA

• helikaler Doppelstrang aus Nukleotiden dNMP

• dNMP = Base + Phosphat + Desoxyribose

-A-T-A-T-G-C-T-A-G-G-C-C--T-A-T-A-C-G-A-T-C-C-G-G-

Mechanismus der Desinfektionswirkung

UV-C wird von Purin- und Pyrimidinbasen absorbiert

 \Rightarrow Reaktion zwischen benachbarten Thyminbasen

(2 + 2 Cycloaddition erlaubt nach Woodward-Hoffmann)

⇒ Fehler beim Kopieren der DNA

Nucleotid	Extinktionskoeffizient ε bei 260 nm
dAMP	15200
dTMP	8400
dGMP	12000
dCMP	7100

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

Kapitel UV-Strahlungsquellen Folie 12

Bräunung von Haut

50%

Bräunung

UV-A: Direkte Pigmentierung UV-B: Indirekte Pigmentierung

Direkte Pigmentierung: Oxidation von Melanin zu Melaninoxid (geringe Lebensdauer) Indirekte Pigmentierung: Einlagerung von neuen Melanosomen (Langzeiteffekt)

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen	
Prof. Dr. T. Jüstel, FH Münster	Folie 13	

- Durch UV-Licht wird die Haut gereizt und in Folge der stärkeren Durchblutung gerötet
- Bei längerer UV-Exposition kommt es zu phototoxischen Reaktionen (Sonnenbrand)

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen	
Prof. Dr. T. Jüstel, FH Münster	Folie 14	

Bräunung – Weitere Nebeneffekte

- Im wesentlichen ist UV-B Strahlung für positive und negative Wirkungen verantwortlich
- Die Wellenlängenabhängigkeit der biologischen Effekte ist im UV-B sehr ausgeprägt

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen
Prof. Dr. T. Jüstel, FH Münster	Folie 15

Prävitamin D₃-Bildung in der Haut

12.5 Natürliche UV-Strahlungsquellen

Die natürliche UV-Strahlungsquelle ist die Sonne

12.5 Natürliche UV-Strahlungsquellen

12.5 Natürliche UV-Strahlungsquellen

Ortsabhängige Verteilung der UV-Strahlung (am 21. Juni zur Mittagszeit)

Solar	Latitude	Nearest location at	UV-B	UV-A	UV-B	E _{<320}	E _{>320}	$E_{<320}/E_{>}$
height	[°] N	10° E	[W/m ²]	[W/m ²]	[%]	[W/m ²]	[W/m ²]	320
83.5	30	Ghadames, Libya	1.66	61.0	2.65	0.1654	0.0380	4.35
78.5	35	Sfax, Tunisia	1.61	59.9	2.61	0.1587	0.0373	4.25
73.5	40	Sardinia	1.52	58.0	2.55	0.1487	0.0360	4.13
68.5	45	La Spezia, Italy	1.41	55.7	2.47	0.1359	0.0345	3.94
63.5	50	Schweinfurt, Germany	1.28	52.7	2.37	0.1208	0.0325	3.72
60	53.5	Hamburg, Germany	1.18	50.2	2.30	0.1094	0.0309	3.54
58.5	55	Århus, Denmark	1.13	49.1	2.25	0.1043	0.0302	3.45
53.5	60	Oslo, Norway	0.97	45.0	2.11	0.0870	0.0275	3.16
48.5	65	Trondheim, Norway	0.80	40.5	1.94	0.0697	0.0246	2.83

In hohen Breiten ist nur sehr wenig UV-B Strahlung im Tageslicht

Hamburg (~53,5° nördlicher Breite) am 21. Juni, mittags (Sonnenhöhenwinkel ~ 60°)

- UV-B/UV-A [%] 2,30
- E(<320)/E(>320) 3,54

Lampentypen

<u>Hg-Entladungslampen</u> • Niederdruck	185, 254 nm	"UVC-Strahlungsquelle"
• Mitteldruck + Filter	200 - 400 nm	
Niederdruck + Leuchtstoff	200 - 400 nm	F BI
<u>Exzimerlampen</u> • Xe ₂ *	172 nm	
• XeBr*	282 nm	
• XeCl*	308 nm	
• Xe ₂ * + Leuchtstoff	200 - 400 nm	
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster		Kapitel UV-Strahlungsquellen Folie 20

Emissionsmaxima und Effizienzen von Exzimerlichtquellen im Sinus-Betrieb

	F	CI	Br	I	Edelgas
Reines Halogen	? 158 nm	? 258 nm	? 293 nm	? 342 nm	-
Ar	> 10% 193 nm	ca. 5% 175 nm	< 0.1% 161 nm	-	Ar [*] 2 ~10% 126 nm
Kr	> 10% 248 nm	18% 222 nm	ca. 5% 207 nm	< 0.1% 185 nm	Kr* ₂ ~15% 146 nm
Хе	> 10% 351 nm	14% 308 nm	15% 282 nm	ca. 5% 253 nm	Xe [*] 2 30% 172 nm

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel UV-Strahlungsquellen Folie 21

Hg-Mitteldrucklampen

- Lampenglas und Filter: Keine Emission unterhalb von 280 nm!
- Hoher UV-B Anteil ~ 10% ⇒ Gesichtsbräuner

Inkohärente Lichtquellen
Prof. Dr. T. Jüstel, FH MünsterKapitel UV-Strahlungsquellen
Folie 22

12.7 UV-Leuchtstoffe

12.7 UV-Leuchtstoffe

172 nm Effizienz: LaMgAl₁₁O₁₉:Ce > YPO₄:Ce ~ BaSi₂O₅:Pb > Sr₂MgSi₂O₇:Pb

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen
Prof. Dr. T. Jüstel, FH Münster	Folie 25

Historische Entwicklung

- 60er und frühe 70er
- Mitte der 70er
- späte 70er
- 80er

• frühe 90er

• späte 90er

2010er

Harte UV Strahlungsquellen (UV-C!) "Höhensonnen"

Harte UV Strahlung schädigt die DNA TL Lampen mit UV-A Leuchtstoff TL Lampen mit verbessertem UV-A Leuchtstoff

Bräunung mit UV-A Strahlung ist sicher TL Lampen mit UV-Leuchtstoffmischungen Hg-Hochdrucklampen mit Filter

Ausgewogenes UV-B/UV-A Verhältnis ist günstig Lampen mit Glas mit erhöhter UV-Transparenz (und UV-B Leuchtstoff)

Optimal sind Strahlungsquellen mit tageslichähnlichem UV-Spektrum UV-B/UV-A Leuchtstoffmischungen

UV-A LEDs (+ UV-B LEDs)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel UV-Strahlungsquellen Folie 26

etwa 1000 h

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen
Prof. Dr. T. Jüstel, FH Münster	Folie 27

Fluoreszenzlichtquellen mit tageslichtähnlichem Erythemspektrum \Rightarrow UV-A + UV-B Leuchtstoff, z.B. LaPO₄:Ce + BaSi₂O₅:Pb UV-B UV-A 1,0 Relative Bräunungseffizienz **Referenz-Sonnenlicht** 0,8 0,6 **CLEO** Natural 0,0 280 300 320 340 360 380 400 Wellenlänge [nm] Inkohärente Lichtquellen Kapitel UV-Strahlungsquellen Prof. Dr. T. Jüstel, FH Münster Folie 29

12.9 Psoriasislampen

Behandlung von Hautkrankheiten

Psoriasis, Vitiligo, atopische Dermatitis und andere Hautkrankheiten können mit UV-B Strahlung behandelt werden

12.9 Psoriasislampen

Wirtsgitter mit Gd³⁺ als Emitter

Leuchtstoffe für UV-B Fluoreszenzlampen

Standard LaB₃O₆:Bi³⁺,Gd³⁺

Problem: Photostabilität von Bi³⁺

Lösung: Verwendung von Ce³⁺ als Photosensibilisator

- \Rightarrow Geringe Aufspaltung der 5d-Orbitale des Ce³⁺ erforderlich (z.B. in Phosphaten)
- \Rightarrow Wirtsgitter mit hoher Koordinationszahl für Ln³⁺(z.B. GdMgB₅O₁₀)

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen
Prof. Dr. T. Jüstel, FH Münster	Folie 31

Zur Desinfektion von Wasser, Luft und Oberflächen

Anforderungen

- Emission zwischen 230 und 280 nm
- Keine Strahlung < 230 nm, da sonst Photoreduktion von NO₃⁻ zu NO₂⁻ (in Wasser)
- Keine Strahlung < 200 nm, da sonst Spaltung von H_2O in $H^{\cdot} + OH^{\cdot}$

Geignete Lampentypen

- Hg-Niederdruckentladungslampen Linienemission bei 254 nm
- Hg-Mitteldruckentladungslampen Emission im ganzen UV-Bereich
- Hg-Hochdruckentladungslampen Emission im ganzen UV-Bereich

Spektrum einer Hg-Niederdruckentladungslampe

Hg-Entladungslampen: Nachteile

- Umweltverträglichkeit (Hg-Gehalt)
- Empfindlichkeit gegenüber schnellen Schaltzyklen
- Temperaturabhängigkeit der Entladungseffizienz und UV-Lichtausbeute (Wassertemperatur ~ 10 – 15 °C)
- Zylinderförmige Geometrie

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster Kapitel UV-Strahlungsquellen Folie 33

Dielektrisch behinderte Entladungslampen (Xe-Exzimerlampen)

Elektrode (Anode) Dielektrikum Leuchtstoffschicht Entladungsbogen

 $\begin{array}{lll} e^{-} + Xe & \rightarrow Xe^{*} \\ Xe^{*} + 2 Xe & \rightarrow Xe_{2}^{*} + Xe \\ Xe_{2}^{*} & \rightarrow 2 Xe + 172 \text{ nm} \end{array}$

Leuchtstoffschicht Dielektrikum Elektrode (Kathode)

Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster

UVC Leuchtstoffe für Xe-Exzimerlampen

Anforderungen

- Emissionsbande im Bereich (190) 200 280 nm
- Hohe Lichtausbeute unter 172 nm Anregung
- Hohe VUV Stabilität
- ⇒ Wirtsgitter mit Bandlücken > 6.0 eV und redoxstabile Aktivatoren

Ī	<u>euchtstoff =</u>	= Wirts	<u>gitter</u>	+	Aktivator	<u>(optischer Übergang)</u>
		Fluor	id		Tl+	6s-6p
		Phos	ohat		Pb ²⁺	6s-6p
Sulfat			Bi ³⁺	6s-6p		
		Borat			Nd ³⁺	4f-5d
		Oxid			Pr ³⁺	4f-5d
Inkohärente Lichtquellen Prof. Dr. T. Jüstel, FH Münster					Kapitel UV-Strahlungsquellen Folie 36	

UVC Leuchtstoffe – Modulation der Aktivatorabsorption und Emissionsspektren

Nd³⁺- und Pr³⁺-Leuchtstoffe

 $[Xe]4f^25d^1 \rightarrow [Xe]4f^3 \, ({}^4I_J)$

 $[Xe]4f^{1}5d^{1} \rightarrow [Xe]4f^{2} ({}^{4}H_{J}, {}^{3}F_{2})$

Chips based on (Al,Ga)N semiconductors

Semiconductor	Band gap [eV]	[nm]
GaN	3.5	365
AIN	6.2	205

Status November 2012 265 nm 70% IQE @ 25 mW

Focus on application in

- Curing 365 nm
- Tanning 350 nm
- Disinfection 265 nm
- Skin safe disinfection 222 nm

UV emitting LEDs

Development / Outlook

- Heat dissipation: Output and lifetime limit
- > DUV-LED → DUV Laser Diode: Challenging!
- Wavelength: Theoretical limit is 205 nm,
 Present experimental limit is 223 nm
- Fabrication issues to be solved yet:
 Quality + mass production
- Increase efficiency: Layer processing, reduce resistive losses
- Multiple chip packaging: 11 mW @ 280 nm

(AI,Ga)N LEDs - Band gap engineering

PL spectra of (Al,Ga)N samples

Band gap energy – lattice constant relation

Inkohärente LichtquellenKapitel UV-StrahlungsquellenProf. Dr. T. Jüstel, FH MünsterFolie 42

12.12 Zusammenfassung

Standard UV radiation sources: Hg discharge lamps (LP, amalgam LP, MP, and HP)

- Very efficient
- But many disadvantages in application, e.g. Hg content, bad run-up and switching behaviour, lifetime, and temperature dependence

Excimer discharge lamps

- Many emission spectra available, but efficiency is low, e.g. KrCl* at 222 nm
- Xe₂* excimer discharge is the most efficient one (172 nm)
- phosphor converted lamps offer arbitrary UV spectra between 180 and 400 nm adjustable to application demands

UV emitting LEDs

- AIN and GaN form a solid solution, which offer band gap engineering and emission peak adjustment between about 210 and 365 nm
- Main problems: n-type and p-type doping
- UV radiation flux and efficiency is still low, package degrades quickly
- LEDs are small and flexible low-voltage devices

Inkohärente Lichtquellen	Kapitel UV-Strahlungsquellen
Prof. Dr. T. Jüstel, FH Münster	Folie 45