
7. Halogene

Gliederung

- 7.1 Vorkommen
- 7.2 Gruppeneigenschaften
- 7.3 Physikalische Eigenschaften
- 7.4 Darstellung
- 7.5 Verwendung
- 7.6 Chemisches Verhalten
- 7.7 Interhalogenverbindungen
- 7.8 Halogenwasserstoffe
- 7.9 Sauerstofffluoride und Halogenoxide
- 7.10 Sauerstoffsäuren der Halogene
- 7.11 Pseudohalogene
- 7.12 Biologische Aspekte
- 7.13 Technische Aspekte

1, 02,0	• / 1111
9 F	1886
17 Cl	1774
35 Br	1826
53 I	1811
85 At	1940
117 Ts	2010

Gruppe

17 bzw. VIIA

Halogene "Salzbildner"

7.1 Vorkommen

Wegen ihrer großen Reaktionsfähigkeit kommen Halogene nicht elementar vor

Fluor (fluor)	$\mathbf{CaF_2}$	Flussspat —

lat.: fließend Na₃AlF₆ Kryolith

Ca₅(PO₄)₃F Fluor-Apatit

 $(Al_2(OH,F)_2)[SiO_4]$ Topas

<u>Chlor (Chloros)</u> NaCl Steinsalz

griech.: gelbgrün KCl Sylvin

KMgCl₃·6H₂O Carnallit

Meerwasser 18,1 kg Cl-/m³

Brom (Bromos) AgBr Bromargyrit

griech.: Gestank Meerwasser 68 g Br⁻/m³

Totes Meer $4 - 5 \text{ kg Br}/\text{m}^3$

<u>Iod (Iodos)</u> nicht als Iodid, sondern als Iodat

griech.: veilchenfarbig Ca(IO₃)₂ Lautarit

als Beimengung im Chilesalpeter

7.2 Gruppeneigenschaften

Halogene sind ausgeprägte Nichtmetalle, wobei die Anlagerung eines Elektrons zur Edelgaskonfiguration führt und dieser Prozess somit stark exotherm ist.

	$\mathbf{F_2}$	$\mathbf{Cl_2}$	\mathbf{Br}_2	$\mathbf{I_2}$
Ordnungszahl	9	17	35	53
Elektronen-	[He]	[Ne]	[Ar]	[Kr]
konfiguration	$2s^22p^5$	$3s^23p^5$	$3d^{10}4s^24p^5$	$4d^{10}5s^25p^5$
Elektronegativität	4,1	2,8	2,7	2,2
Elektronenaffinität [eV]	-3,4	-3,6	-3,4	-3,1
Ionisierungsenergie [eV]	17,5	13,0	11,8	10,4
Nichtmetallcharakter		nimm	t ab	
Reaktionsfähigkeit		nimm	t ab	
Oxidationsstufen	-1		-1, +1, +3, +5, +7	

Bei Cl, Br und I können d-Orbitale zur Bildung kovalenter Bindungen herangezogen werden, so dass Oktettaufweitung möglich ist \Rightarrow ClF₃, BrF₃, IF₃, ClF₅, BrF₅, IF₅, IF₇, ClO₃⁻, ClO₄⁻

Anorganische Chemie Prof. Dr. Thomas Jüstel

7.3 Physikalische Eigenschaften

Wegen ihrer Elektronenkonfiguration bestehen die elementaren Halogene in allen Aggregatzuständen aus zweiatomigen Molekülen

	$\mathbf{F_2}$	Cl_2	\mathbf{Br}_2	$\mathbf{I_2}$
Farbe	schwach gelb	gelbgrün	braun	violett
Schmelzpunkt [°C]	-220	-101	-7	114
Siedepunkt [°C]	-188	-34	59	185
Dissenergie [kJ/mol]	158	244	193	151
Bindungslänge X-X [pm]	144	199	228	267
Standardpotenzial E ⁰ [V]	+2,87	+1,36	+1,07	+0,54

Die niedrige F-F Bindungsenergie wird durch die geringe Größe des Fluors und der damit verbundenen Abstoßung nicht bindender Elektronenpaare verursacht:

Fluor	$[\mathbf{F}\text{-}\mathbf{F}]^0$	ber. 128 pm	exp. 143 pm	
H_2O_2	$[O-O]^{2-}$	ber. 132 pm	exp. 146 pm	
N_2H_4	$[N-N]^{4-}$	ber. 140 pm	exp. 145 pm	trotz hoher negativer Ladung

Anorganische Chemie Prof. Dr. Thomas Jüstel

7.4 Darstellung

Technische Methoden

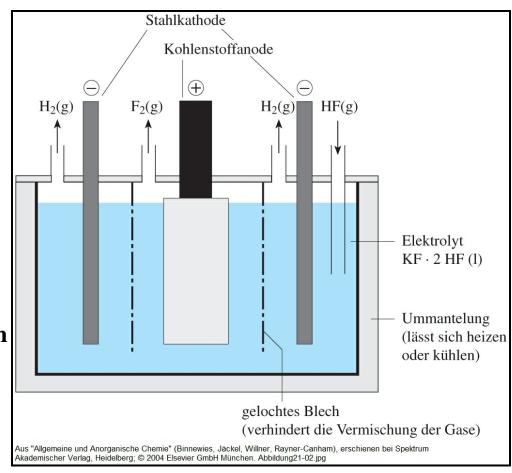
Fluor

Elektrolyse von KF \cdot 2HF \rightarrow

Chlor

Chloralkalielektrolyse (→ **Vorträge**)

Brom


Einleiten von Chlor in Br-haltige Lösungen

$$2 Br^- + Cl_2 \rightarrow Br_2 + 2 Cl^-$$

<u>Iod</u>

Reduktion von Iodat mit SO₂

$$2 \text{ HIO}_3 + 5 \text{ SO}_2 + 4 \text{ H}_2\text{O} \rightarrow 5 \text{ H}_2\text{SO}_4 + \text{I}_2$$

7.4 Darstellung

Laboratoriumsmethoden

Fluor

Erhitzen von Edelmetallfluoriden oder Mangantetrafluorid

$$2 \text{ AgF}_2(s) \rightarrow 2 \text{ AgF}(s) + F_2(g)$$

$$AuF_3(s) \rightarrow AuF(s) + F_2(g)$$

 $2 \operatorname{MnF}_4(s) \rightarrow 2 \operatorname{MnF}_3(s) + \operatorname{F}_2(g)$

Chlor

Erhitzen von CuCl₂ oder Oxidation von Chlorwasserstoff

$$2 \operatorname{CuCl}_2(s) \rightarrow 2 \operatorname{CuCl}(s) + \operatorname{Cl}_2(g) \uparrow$$

$$4 \operatorname{HCl}(g) + \operatorname{MnO}_2(s) \rightarrow \operatorname{Cl}_2(g) + \operatorname{MnCl}_2(s) + 2 \operatorname{H}_2\operatorname{O}(l)$$

Brom

Oxidation von KBr mit konz. Schwefelsäure

$$2 HBr(g) + H2SO4(l) \rightarrow Br2(g) + SO2(g) + 2 H2O(l)$$

Iod

Umsetzung von Iodiden mit Iodaten

$$5 I (aq) + IO_3(aq) + 6 H(aq) \rightarrow 3 I_2(s) + 3 H_2O(l)$$

7.5 Verwendung

Fluor und Fluoride

- Flussmittel: LiF, NaF, Na₃AlF₆ \Rightarrow Festkörperchemie (\rightarrow Material für Vorlesungen)
- Fluorierungsmittel: $N_2F_4 \rightarrow 2 NF_2$ und $CF_4 \rightarrow CF_2 + F_2 (\rightarrow Laserkristalle)$
- Anreicherung von ²³⁵U

$$UO_2 + 4 HF \rightarrow UF_4 + 2 H_2O$$

 $UF_4 + F_2 \rightarrow UF_6$ (sublimiert bei 56 °C)

Gaszentrifugen: $^{235/238}\text{UF}_6 \rightarrow ^{235}\text{UF}_6 + ^{238}\text{UF}_6$

- NaF als Zusatzstoff im Trinkwasser und in Zahnpasta
- Synthese von FCKW und 1,1,2,2-Tetrafluorethylen → Teflon
- Ionenaustauscher: Nafion (Teflon mit SO₃H-Seitenketten)
- F₂/H₂-Mischungen als Raketentreibstoff (ca. 4700 °C)

Chlor und Chloride

- Desinfektion und oxidatives Bleichen: Cl₂, ClO₂
- Organische Chemie:
 - Vinylchlorid $CH_2=CHCl \rightarrow Polyvinylchlorid$
 - Insektizide → DDT
 - Farbstoffe und Pharmaka
 - Lösungsmittel → Chloroform, Methylenchlorid,

Struktur von DDT (a) und 2,3,7,8-Tetrachlordibenzodioxan (b)

7.5 Verwendung

Brom und Bromide

- Organische Chemie:
 - Grignard-Reagenzien
 - Alkylierungen
- Tränengas: Bromaceton
- Photoempfindliche Beschichtungen: AgBr
- Narkotika: Halothan CF₃-CHClBr
- Farbstoffe (Purpur: 6,6'-Dibromindigo) →

Iod und Iodide

- Organische Chemie:
 - Grignard-Reagenzien
 - Ethersynthesen
 - Aminalkylierungen
- Iodierung von Speisesalz: 0,01% NaI
- Röntgenkontrastmittel (hohe Dichte organischer Iodverbindungen)
- Desinfektionsmittel: Iodtinktur (I₂ und KI in Ethanol)
- Farbstoffe und Pharmaka

12000 Purpurschnecken (Murex brandaris) liefern 1,5 g Purpur ($\lambda_{max} = 570 \text{ nm}$)

Röntgenkontrastmittel: Amidotrizoesäure

7.5 Exkurs: Excimer-LASER

Excimere sind Moleküle, die nur im angeregten Zustand stabil sind

Excimerlaser und -strahler sind leistungsstarke Prim \ddot{a} rstrahlungsquellen, die im (Vakuum) UV-Bereich (100 – 380 nm) Strahlung emittieren

$\lambda e + e^- \rightarrow \lambda e^- + e^-$
$Xe^* + Xe \rightarrow Xe_2^*$ $Xe^* + Cl \rightarrow XeCl^*$ $Xe^* + Pr \rightarrow XePr^*$
$Xe^* + Br \rightarrow XeBr^*$ $Xe_2^* \rightarrow 2 Xe + hv$
$Xe_2 \rightarrow Z Xe + RV$ $XeCl^* \rightarrow Xe + Cl + hv$ $XeBr^* \rightarrow Xe + Br + hv$

 $\mathbf{V}_{0} + \mathbf{o}^{2} \rightarrow \mathbf{V}_{0}^{*} + \mathbf{o}^{2}$

	F	CI	Br	I	Reines Edelgas
					Ar* ₂ :
Ar	> 10 %	ca. 5 %	< 0.1 %		~10%
	193 nm	175 nm	161 nm		126 nm
					Kr* ₂ :
Kr	> 10 %	18 %	ca. 5 %	< 0.1 %	~15%
	248 nm	222 nm	207 nm	185 nm	146 nm
					Xe* ₂ :
Xe	> 10 %	14 %	15 %	ca. 5 %	30 %
	351 nm	308 nm	282 nm	253 nm	172 nm

7.6 Chemisches Verhalten

Fluor

Fluor ist das reaktionsfähigste Element

- Höchste Elektronegativität, Niedrige Dissoziationsenergie der F-F-Bindung
- Durch Reaktion mit Fluor lassen sich die Elemente des PSE in hohe und höchste Oxidationsstufen überführen: I^{+VII}F₇, S^{+VI}F₆, Xe^{+VI}F₆, Cl^{+V}F₅, Bi^{+V}F₅, Ag^{+II}F₂, Au^{+V}F₅, U^{+VI}F₆, ...

Fluor zersetzt Wasserstoffverbindungen

$$2 H_2O + 2 F_2 \rightarrow 4 HF + O_2$$

 $SiO_2 + 4 HF \rightarrow SiF_4 + 2 H_2O$ (Zersetzung von Glas- und Quarzgefäßen)

⇒ Fluor wird in Stahlgefäßen aufbewahrt (Oberflächenpassivierung von Fe, Al, und Ni durch Bildung einer diffusionsdichten Fluoridschicht)

$$H_2S + F_2 \rightarrow 2 HF + 1/8 S_8$$

$$2 NH_3 + 3 F_2 \rightarrow 6 HF + N_2$$

 $CH_4 + 4 F_2 \rightarrow 4 HF + CF_4$ (Oberflächenfluorierung von Kunststoffen)

7.6 Chemisches Verhalten

Chlor, Brom und Iod

Disproportionierung in Wasser (Chlor-, Brom- und Iodwasser)

$$X_2 + H_2O \rightleftharpoons HOX^{+I} + H^+ + X^{--I} (X = Cl, Br, I)$$

	Chlor	Brom	Iod
c(gesamt)	0,091	0,21	0,0013
$c(\mathbf{X}_2)$	0,061	0,21	0,0013
c(HOX)	0,030	0,001	6·10-6
$\mathbf{c}(\mathbf{H}^+) = \mathbf{c}(\mathbf{X}^-)$	0,030	0,001	6·10-6

(alle Konzentrationen in mol/l bei 25 °C)


Bildung von Polyhalogenidionen

$$X_2 + X^- \rightleftharpoons X_3^- (X = Cl, Br, I) [I-I-I]^-$$

linear und symmetrisch, B.O. = 0.5 (4 e⁻ 3-Zentren-Bdg.)

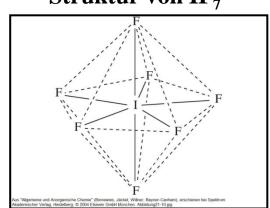
Iod bildet auch I_5 , I_7 , I_9 (alle gewinkelt)

Iodstärkereaktion: Nachweis von I₂ durch Stärke:

noodle


sample

7.7 Interhalogenverbindungen

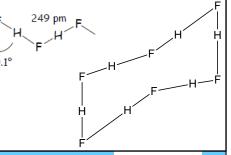

Verbindungen der Halogenen untereinander der Typen XY, XY₃, XY₅, XY₇

Mit Ausnahme von ICl, IBr, BrCl und (ICl₃)₂ sind alle anderen Interhalogene Fluoride:

Summenformel	Darstellung	Hybridisierung	Struktur
XY	$X_2 + Y_2 \rightarrow 2 XY$	-	-
XY ₃	$XY + Y_2 \rightarrow XY_3$	$\mathrm{sp}^3\mathrm{d}$	T-förmig
XY ₅	$XY_3 + Y_2 \rightarrow XY_5$	$\mathrm{sp}^3\mathrm{d}^2$	quadratisch-pyramidal
XY ₇	$XY_5 + Y_2 \rightarrow XY_7$	$\mathrm{sp}^3\mathrm{d}^3$	pentagonal-bipyramidal
(ICl ₃) ₂	$I_2 + 3 Cl_2 \rightarrow (ICl_3)_2$	$\mathrm{sp}^3\mathrm{d}$	quadratisch-planar
Struktur von	I ₂ Cl ₆ I ₂ Cl ₆ als feste	s Chlorierungsmittel	Struktur von IF ₇

7.8 Halogenwasserstoffe

In den Halogenwasserstoffen liegen stark polare Einfachbindungen vor


	HF	HCl	HBr	НІ
Bildungsenthalpie [kJ/mol]] -271	-92	-36	-26
Schmelzpunkt [°C]	-83	-114	-87	-51
Siedepunkt [°C]	20	-85	-67	-35
Säurestärke [pKs]	3,2	< 0	< 0	< 0
Bindungslänge H-X [pm]	92	127	141	161
Elektronegativitätsdiff.	1,8	1,0	0,8	0,5
Dipolmoment μ [D]	1,9	1,1	0,8	0,4

Der hohe Siedepunkt von HF ist die Folge des hohen Dipolmomentes und den folglich starken

Wasserstoffbrückenbindungen (F-H-F Abstand ~ 250 pm)

- \Rightarrow Hexamere in der Gasphase: $(HF)_{\infty}(I) \rightleftharpoons (HF)_{6}(g) \rightleftharpoons 6 HF(g)$
- \Rightarrow Bildung saurer Salze: $F^- + HF \rightarrow [F-H-F]^- z.B. KHF_2$

$$F^- + 2 HF \rightarrow [F-H-F-H-F]^-$$

Anorganische Chemie Prof. Dr. Thomas Jüstel

7.8 Halogenwasserstoffe

Darstellung

Fluor

$$H_2 + F_2 \rightarrow 2 HF$$

auch bei -250 °C im Dunkeln

$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2 HF$$

Chlor

$$H_2 + Cl_2 \rightarrow 2 HCl$$

bei Belichtung: $Cl_2 \rightarrow 2 \ Cl \cdot (Kettenstart)$

$$Cl + H_2 \rightarrow HCl + H$$

$$H \cdot + Cl_2 \rightarrow HCl + Cl \cdot$$

$$2 \text{ NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{ HCl}$$

Brom/Iod

$$PX_3 + 3 H_2O \rightarrow H_3PO_3 + 3 HX$$
 mit $X = Br, I$

$$AlX_3 + H_3PO_4 \rightarrow AlPO_4 \downarrow + 3 HX$$
 mit $X = Br, I$

Oxidierende Säuren setzen die Halogene frei:

$$2 PBr_3 + 3 H_2SO_4 \rightarrow 3 Br_2 + 3 SO_2 + 2 H_3PO_3$$

7.9 Sauerstofffluoride und Halogenoxide

Sauerstoffhalogenide

Übersicht

- Die Oxide sind endotherme Verbindungen (Ausnahme: I_2O_5)
- Technisch interessant: ClO₂ als Bleichmittel, Desinfektion, Chlorierung

Sauerstofffluoride

```
\overline{F^{\text{-I}}_2O^{\text{+II}}}
```

Darstellung $2 F_2 + 2 OH^- \rightarrow 2 F^- + F_2O + H_2O$ (Disproportionierung)

(F₂ in alkalischer Lösung: Formal Anhydrid der Hypofluorigen Säure)

Eigenschaften stark ätzer

stark ätzendes, farbloses Gas, sehr giftig, starkes Fluorierungs- und

Oxidationsmittel (fluoriert Xe)

mit H_2O erfolgt Zersetzung: $F_2O + 2OH^- \rightarrow 2F^- + O_2 + H_2O$

Aufbau

Bindungswinkel im Vergleich: Cl₂O 110,8°, F₂O 101,3°, H₂O 104,5°

Darstellung Glimmentladung eines Gemisches aus F_2 und O_2

Eigenschaften sehr i

sehr instabil, Zersetzung bei -100 $^{\circ}$ C

Aufbau

analog H₂O₂ (O-O kürzer als in H₂O₂, O-F lang)

ionische Formulierung: F- + O=O+-F

7.9 Sauerstofffluoride und Halogenoxide

Halogenoxide

Chlor- und Bromoxide (alle Bromoxide sind nur bei tiefen Temperaturen stabil)

Cl^{+I}₂O und Br^{+I}₂O

Darstellung $2 X_2 + 2 HgO \rightarrow X_2O + HgO \cdot HgX_2 \text{ mit } X = Cl, Br$

Verschiebung des GG durch Entzug von Cl- bzw. Br-

Eigenschaften mit brennbaren Substanzen $Cl_2O \rightarrow Cl_2 + \frac{1}{2}O_2$

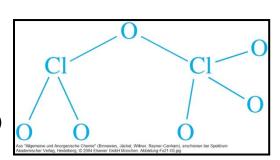
mit Wasser: Hypochlorige Säure HClO

mit Laugen: Hypochlorite ClO-

Cl^{+IV}O₂ Chlordioxid

Darstellung $2 \text{ NaClO}_3 + \text{SO}_2 + \text{H}_2 \text{SO}_4 \rightarrow 2 \text{ ClO}_2 + 2 \text{ NaHSO}_4$

Eigenschaften In alkalischer Lsg.: $2 \text{ ClO}_2 + 2 \text{ OH}^- \rightarrow \text{ClO}_2^- + \text{ClO}_3^- + \text{H}_2\text{O} \text{ (Disproport.)}$


Cl^{+VI}₂O₆ Dichlorhexaoxid

Darstellung $2 \text{ ClO}_2 + 2 \text{ O}_3 \rightarrow \text{ Cl}_2 \text{O}_6 + 2 \text{ O}_2$

Cl^{+VII}₂O₇ Dichlorheptaoxid (eckenverknüpfte Tetraeder)

Darstellung $2 \text{ HClO}_4 + P_4O_{10} \rightarrow \text{ Cl}_2O_7 + \text{,,H}_2P_4O_{11}$ "

Eigenschaften obwohl auch endotherm, stabilstes Chloroxid, ölige Flüssigkeit

7.9 Sauerstofffluoride und Halogenoxide

Halogenoxide

Iodoxide

I^{+III/V}₂O₄ Diiodtetraoxid

Darstellung $3 \text{ HIO}_3 \rightarrow I_2O_4 + \text{HIO}_4 + \text{H}_2O \text{ (in H}_2SO_4 \text{ zur Dehydratisierung)}$

Eigenschaften Zersetzung bei T > 100 °C: 5 $I_2O_4 \rightarrow 4 I_2O_5 + I_2$

Aufbau im FK [IO]⁺-Ketten + [IO₃]⁻ Anionen

I^{+V}₂O₅ Diiodpentaoxid (seit 1813 bekannt!)

Darstellung Anhydrid der Iodsäure: 2 HIO $_3 \rightarrow \text{H}_2\text{O} + \text{I}_2\text{O}_5$ bei 240 °C

Eigenschaften Mit Wasser: $I_2O_5 + H_2O \rightarrow 2 \text{ HIO}_3$

Mit Kohlenmonoxid: $I_2O_5 + 5 CO \rightarrow 2 CO_2 + I_2 (CO\text{-Bestimmung})$

Aufbau Monokline Molekülkristalle bestehend aus O₂I-O-IO₂ Molekülen

I+V/VII₂O₆ Diiodhexaoxid

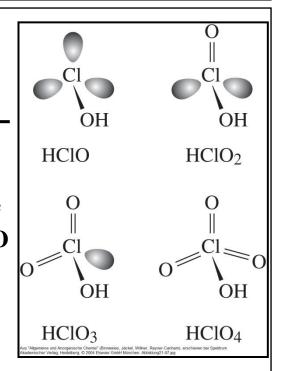
Darstellung Entwässern eines Gemisches der Iod- und Periodsäure

Aufbau Trikline Ionenkristalle bestehend aus [IO₂]⁺[IO₄]⁻

I+III/V₄O₉ Tetraiodnonaoxid

Darstellung $3 O_3 + 2 I_2 \rightarrow I_4 O_9$ in CCl₄ bei -78 °C

Aufbau vermutet: $I^{+III}[I^{+V}O_3]_3$ oder $[I_3O_6]^+[IO_3]^-$


0 10 0

Anorganische Chemie Prof. Dr. Thomas Jüstel Folie 17

7.10 Sauerstoffsäuren der Halogene

Sauerstoffsäuren des Chlors

HCl ^{+I} O	$HCl^{+III}O_2$	HCl ^{+V} O ₃	HCl ^{+VII} O ₄
Hypochlorige S.	Chlorige Säure	Chlorsäure	Perchlors.
ClO-	ClO ₂ ·	ClO ₃ -	ClO ₄ -
Hypochlorite	Chlorite	Chlorate	Perchlorate
$Cl_2O + H_2O$	$Cl_2O_3 + H_2O$	$Cl_2O_5 + H_2O$	$Cl_2O_7 + H_2O$

Nur HClO₄ ist in reiner Form darstellbar (100%-ige Perchlorsäure)

<u>Säure</u>	pKs	Säure	pKs
HClO	7,2	HF	3,2
HClO ₂	2	HCl	-6
HClO ₃	0	HBr	-9
HClO ₄	-10	HI	-10

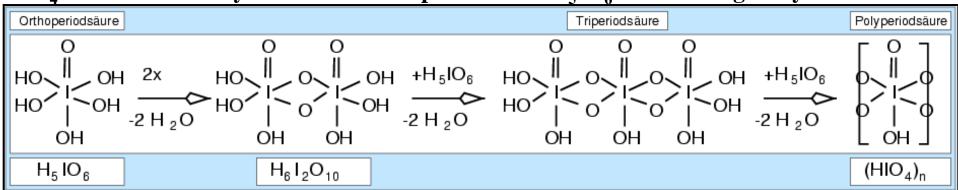
Verwendung der Salze		
\cdot Ca(ClO) ₂	Schwimmbäder	
• NaClO ₂	Bleich- und Desinfektionsmittel	
• KClO ₃	Zündhölzer, Feuerwerk	
• NH ₄ ClO ₄	Feststoffraketen	
	(Space Shuttle Start ~ 850 t)	

7.10 Sauerstoffsäuren der Halogene

Sauerstoffsäuren des Broms und Iods

Übersicht

- Bromsäuren sind sehr viel instabiler als Chlorsäuren
- Perbromat ist von allen XO₄ das stärkste Oxidationsmittel
- Iodsäure und Periodsäure sind als freie Säuren bekannt


Darstellung

$$BrO_3^- + F_2 + 2OH^- \rightarrow BrO_4^- + 2F^- + H_2O$$

$$KClO_3 + I_2 \rightarrow KIO_3 + Cl_2$$

 $KClO_3 + I_2 \rightarrow KIO_3 + Cl_2$ IO_3 kann elektrochemisch zu IO_4 oxidiert werden

HIO₄ kommt nur als hydratisierte Orthoperiodsäure H₅IO₆ vor und zeigt Polykondensation

Anorganische Chemie Prof. Dr. Thomas Jüstel Folie 19

7.11 Pseudohalogene

Einige anorganische Gruppen ähneln den Halogenen

Anion	Anionenname	Säure	Säurename
-C≡N	Cyanid	H-CN	Blausäure
-O-C≡N	Cyanat	H-OCN	Cyansäure
-N=C=O	Isocyanat	H-NCO	Isocyansäure
-S-C≡N	Thiocyanat	H-SCN	Thiocyansäure
-C≡N+-O-	Fulminat	H-CNO	Fulminsäure / Knallsäure
-N=N+=N-	Azid	H-N ₃	Stickstoffwasserstoffsäure

- bilden Inter(pseudo)halogene XY: Br-CN oder CN-N₃
- bilden schwerlöslicher Ag^+ , Hg^{2+} -und Pb^{2+} -Salze: $CN^- + Ag^+ \rightarrow AgCN^{\downarrow}$ oder $2N_3^- + Hg^{2+} \rightarrow Hg(N_3)_2^{\downarrow}$ (explosiv)
- einige lassen sich zu Pseudohalogenen oxidieren: $2 \text{ Cu}^{2+} + 4 \text{ CN}^{-} \rightarrow 2 \text{ CuCN} + (\text{CN})_{2} \uparrow (\text{Dicyan})$
- disproportionieren in alkalischer Lösung:
 (CN)₂ + 2 OH⁻ → 2 CN⁻ + OCN⁻ + H₂O
- bilden Pseudohalogenidkomplexe: $AgCN + CN^{-} \rightarrow [Ag(CN)_{2}]^{-}$

7.12 Biologische Aspekte

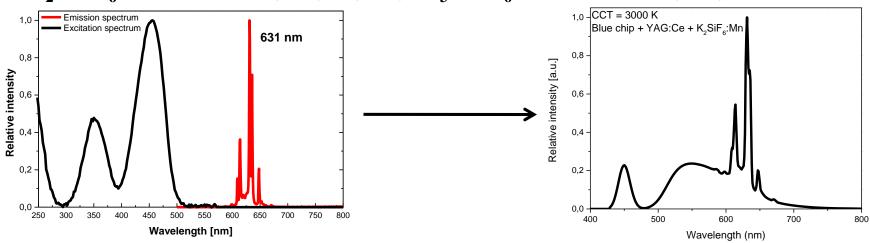
Fluorid ist in geringen Mengen essentiell:

Bei der Zahnhärtung wird Apatit Ca₅(PO₄)₃(OH) in Fluorapatit Ca₅(PO₄)₃F umgewandelt

Chlorid spielt im Elektrolythaushalt eine große Rolle: Blut enthält 0,1 mol/l Cl-

Brom hat nur eine geringe biologische Bedeutung. KBr wurde früher in der Medizin als Beruhigungsmittel und Krampflöser in der Epilepsiebehandlung eingesetzt

Iod wird für die Biosynthese von Thyroxin und Triiodthyronin in der Schilddrüse benötigt

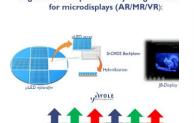

Struktur von Thyroxin

Struktur von Triiodthyronin

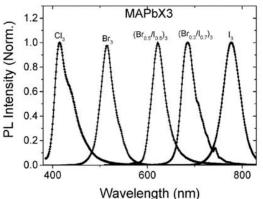
7.13 Technische Aspekte

Fluorid spielt als Bestandteil vieler LED-Leuchtstoffe eine große Rolle:

• $K_2M^{IV}F_6:Mn^{4+}$ ($M^{IV} = Si$, Ge, Sn, Ti), $Na_3M^{III}F_6:Mn^{4+}$ ($M^{III} = Al$, Ga, In)



Halogenide der Pb-Perowskite MPb X_3 (X = Cl, Br, I) für μ -LED Bildschirme & Solarzellen:


 Schmalbandige grüne und rote Emitter

Large displays with low pixel densities

(TV, smartphones...):

High resolution/pixel density integrated are

Pat.: WO 2017017441 A1

 $CsPbI_3$ ($E_g = 1,76 \text{ eV}$) für Dünnschichtsolarzellen