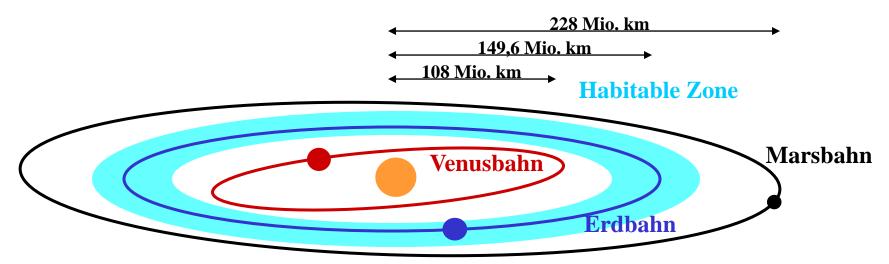
8. Wasser und Wasserstoffperoxid


Gliederung

- 8.1 Wasser Das Lebenselixier
- 8.2 Vorkommen
- 8.3 Physikalische Eigenschaften
- 8.4 Strukturen
- 8.5 Wasser als Lösungsmittel
- 8.6 Wasser als Medium für Elektrolyte
- 8.7 Wasserstoffperoxid

8.1 Wasser – Das Lebenselixier

Flüssiges Wasser ist das Medium, in dem die biologischen Prozesse (→ Biochemie) ablaufen, d.h. die Voraussetzung für Leben

In einem gewissen Abstand von einem Stern existiert eine Kugelschale, in der auf einem Planeten flüssiges Wasser vorkommen kann ⇒ Habitable Zone (→ Exoplanetenforschung)

Auch die Erde umkreist innerhalb dieser Kugelschale unser Zentralgestirn (die Sonne), so dass ihr Oberflächenwasser überwiegend flüssig ist. Dagegen kommt weder auf der Venus noch auf dem Mars Wasser in flüssiger Form vor.

Allgemeine Chemie Prof. Dr. T. Jüstel

8.2 Vorkommen

Wasser kommt auf der Erde in allen Aggregatzuständen vor

Fest Kryosphäre (Antarktis, Grönland, Hochgebirge) 2,6%

Flüssig Hydrosphäre (Ozeane, Binnenmeere) 97,4%

Gasförmig Atmosphäre 0,001% (25 mm)

Wasservorräte auf der Erde ~ 1,38 · 10¹⁸ m³

Oberfläche der Erde ~ 510 · 10¹² m²

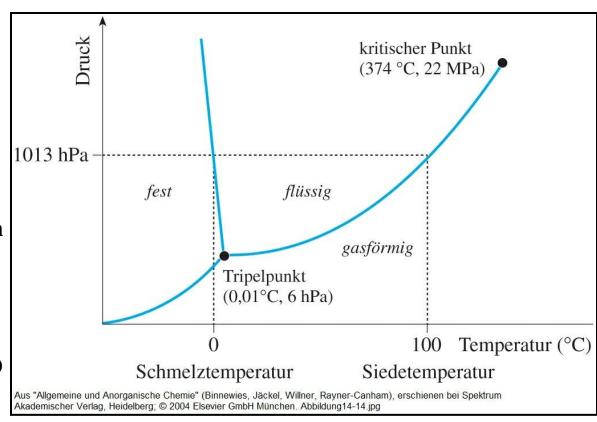
 \rightarrow d ~ 2700 m

Zudem kommt Wasser in gebundener Form als Kristallwasser und als Lösungsmittel in allen Lebewesen (Pflanzen, Tiere, Mikroorganismen) vor

Lithosphäre

Biosphäre (Wassereintrag aus dem Kosmos ~ 2 Mio. Tonnen/Jahr)

Alle Lebensprozesse spielen sich im wässerigen Milieu ab, d.h. die Biologie lässt sich auch als aquatische Chemie bezeichnen


Menschlicher Körper $65\% H_2O$

Einige Gemüsesorten 90% H₂O

8.3 Physikalische Eigenschaften

In hochreinem Zustand ist Wasser eine klare, geruch- und geschmacklose, farblose Substanz

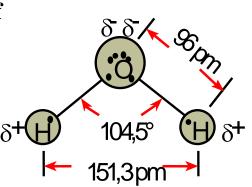
- Schmelzpunkt: $0 \, ^{\circ}\text{C} = 273,15 \, \text{K}$
- Siedepunkt: $100 \, ^{\circ}\text{C} = 373,15 \, \text{K}$
- Hohe Transparenz zwischen
 190 und 800 nm
- Verunreinigungen oder Defekte können zu Einfärbungen führen
 ⇒ Blaues Eis in Gletschern
- Die Zustandsgrößen Druck und Temperatur bestimmen, ob H₂O als festes Eis, flüssiges Wasser oder als Wasserdampf vorliegt

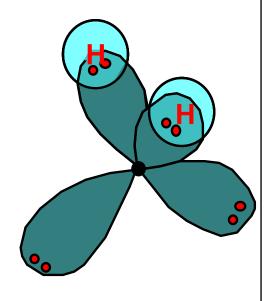
8.3 Physikalische Eigenschaften

Bedeutende Kenngrößen

Größe	Formel- zeichen	Wert	Einheit	Bemerkung
Dichte	ρ	≤1	g cm ⁻³	Dichteanomalie!
spezifische Wärmekapazität	$\mathbf{c}_{\mathbf{p}}$	4216	J kg ⁻¹ K ⁻¹	sehr hoch!
Verdampfungs- wärme bei RT	$\Delta^{\mathrm{g}}_{\mathrm{l}}\mathrm{H}_{\mathrm{m}}$	2,495 · 10 ⁶	J kg ⁻¹	2,5001 · 10 ⁶ bei 0 °C 2,26 · 10 ⁶ bei 100 °C
Schmelzwärme	$\Delta^{\rm s}_{\ l}H_{\rm m}$	$3,3\cdot 10^5$	J kg ⁻¹	
Oberflächen- spannung	σ	0,076	$N m^{-1} = J m^{-2}$	bei 0 °C

Allgemeine Chemie Prof. Dr. T. Jüstel


8.4 Strukturen


Die besonderen Eigenschaften des Wassers lassen sich auf die Struktur des $\rm H_2O$ -Moleküls und die unterschiedlichen EN-Werte der Bindungspartner zurückführen

- Stark polarisierte O-H Atombindungen führen zu einem Molekül mit einem hohen Dipolmoment ⇒ µ = q · d = 1,85 Debye ⇒ Hohe Polarität und starke Wasserstoffbrückenbindungen (1 Debye ≅ 3,33564 ·10⁻³⁰ Cm)
- 2. Formale Hybridisierung der Orbitale des Sauerstoffatoms zu vier gleichwertigen Hybridorbitalen $2s^2 2p_x^2 2p_y^1 2p_z^1 \rightarrow 4 \times 2sp^3$ (Tetraeder: $109^{\circ} 28^{\circ}$)

2 x sp³ Keine Bindungen

⇒ gewinkelte Struktur mit geringer Abweichung vom Tetraederwinkel

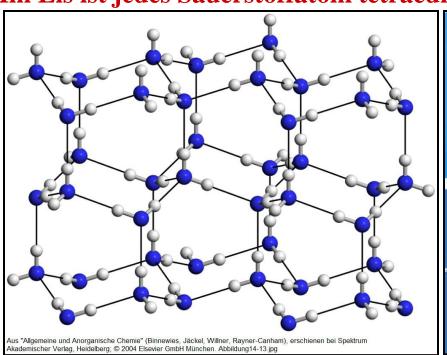
8.4 Strukturen

Wasserstoffbrückenbindungen zwischen HX-Molekülen (X = N, P, O, S, F, Cl)

Zwischen dem positiv geladenen H-Atom des Moleküls HX und dem freien Elektronenpaar eines X-Atoms eines Nachbarmoleküls kommt es zu einer elektrostatischen Anziehung

 $X = F, O, N \Rightarrow Starke Wasserstoffbrückenbindungen$

 $X = Cl, S, P \Rightarrow$ Schwache Wasserstoffbrückenbindungen


Die Wasserstoffbrücken X—H·····X sind meistens linear angeordnet, da dann die Anziehung H·····X am größten bzw. die Abstoßung zwischen den X-Atomen am kleinsten ist.

Flüssiges Wasser \Rightarrow Jedes H₂O-Molekül ist mit 3 – 4 Nachbarmolekülen über Wasserstoffbrückenbindungen verbunden

Festes Wasser (Eis) \Rightarrow Jedes H₂O-Molekül ist mit 4 Nachbarmolekülen über Wasserstoffbrückenbindungen verbunden

8.4 Strukturen

Im Eis ist jedes Sauerstoffatom tetraedrisch von vier Wasserstoffatomen umgeben

Temperatur [°C] Dichte [g/ml]

remperatur [C]	Dicinte [g/III
0 (Eis)	0,9168
0 (Wasser)	0,99984
4	1,000000
10	0,99970
20	0,99821

- ⇒ Offene, hexagonale Struktur mit Hohlräumen
- ⇒ Volumenabnahme beim Schmelzen!
- **⇒** Dichteanomalie des Wassers
- ⇒ ab 4 °C thermische ind. Volumenzunahme (Dichte↓)

8.5 Wasser als Lösungsmittel

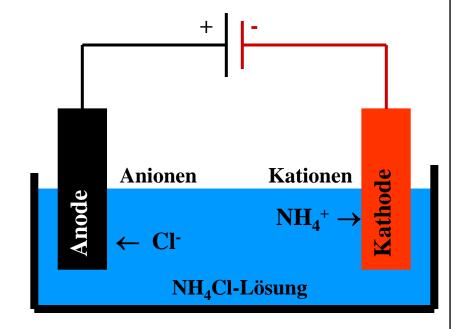
Die guten Lösungseigenschaften von Wasser für Verbindungen, die aus polaren Molekülen wie Zucker oder aus Ionen (Salze) aufgebaut sind, beruhen auf seinen Dipoleigenschaften und seiner Fähigkeit zur Ausbildung von Wasserstoffbrücken

$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$
 $\Delta H_{L} = -787 \text{ kJ/mol}$

Gelöste Ionen liegen in Wasser stets hydratisiert vor (aq)

- \Rightarrow In Abhängigkeit von ihrer Ionenladungsdichte sind sie typischerweise von vier bis sechs H_2O -Molekülen umgeben (koordiniert)
- \Rightarrow Wasser vermindert die Stärke von elektrostatischen Wechselwirkungen gegenüber dem Zustand im Vakuum, um den Faktor 80 (Dielektrizitätskonstante $\epsilon_r = 80$)

Die Hydratation von Salzen kann exotherm oder endotherm verlaufen:


$$\begin{aligned} \text{CaCl}_2(s) &\rightarrow \text{Ca}^{2+}(\textbf{aq}) + 2 \text{ Cl}^{-}(\textbf{aq}) \\ \text{NH}_4 \text{NO}_3(s) &\rightarrow \text{NH}_4^{+}(\textbf{aq}) + \text{NO}_3^{-}(\textbf{aq}) \end{aligned} \qquad \Delta H_L = -81 \text{ kJ/mol} \\ \Delta H_L = +15 \text{ kJ/mol} \Rightarrow \text{ K\"{a}ltemischungen} \end{aligned}$$

8.6 Wasser als Medium für Elektrolyte

Unter Elektrolyte versteht man Verbindungen, die sich unter Bildung frei beweglicher Ionen in Wasser lösen

1. Ionische Verbindungen $NH_4Cl(s) \rightarrow NH_4^+(aq) + Cl^-(aq)$

- 2. Stark polare kovalente Verbindungen $HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$
- **⇒** Bildung frei beweglicher Ionen
- ⇒ Erleichterter Stromtransport bzw.Zunahme der elektrischen Leitfähigkeit

Dagegen werden Substanzen, wie Zucker oder Alkohol, deren wäßrige Lösungen den Strom nicht leiten als Nichtelektrolyte bezeichnet

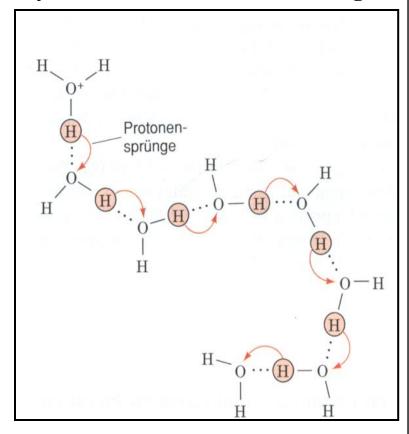
8.6 Wasser als Medium für Elektrolyte

Leitfähigkeit wäßriger Lösungen verschiedener Verbindungen

$$\kappa = \frac{1}{R} \cdot \frac{1}{q} [\mu S / cm]$$

 $\kappa = \frac{1}{R} \cdot \frac{1}{q} [\mu S / cm]$ mit R = elektrischer Widerstand, q = Plattenabstand

Lösung	κ	Erklärung
destilliertes Wasser	13	Autoprotolyse des H ₂ O + gelöstes CO ₂
		$2 H_2O \rightleftharpoons H_3O^+ + OH^-$
		$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H_3O^+$
NaCl-Lösung (c = 0.1 mol/l)	10620	starker Elektrolyt
D-Glucose-Lösung (c = 0.1 mol/l)	14	Nichtelektrolyt
		(Autoprotolyse des H ₂ O + gelöstes CO ₂)
HCl (c = 0.01 mol/l)	24300	starker Elektrolyt
		+ große Ionenbeweglichkeit
$CH_3COOH (c = 0,1 mol/l)$	522	schwacher Elektrolyt
		•

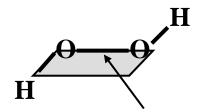

Allgemeine Chemie Prof. Dr. T. Jüstel

8.6 Wasser als Medium für Elektrolyte

Ionenbeweglichkeit in wäßrigen Lösungen bei 298 K

Ion	Beweglichkeit [10 ⁻⁵ in cm ² V ⁻¹ s ⁻¹]
H_3O^+	362.4
Li ⁺	40.1
Na^+	51.9
\mathbf{K}^{+}	76.1
NH_4^+	76.0
Mg^{2+}	55.0
Ca^{2+}	61.6
OH.	197.6
Cl-	76.3
Br	78.3
CH ₃ COC)· 40.9
SO_4^{2-}	79.8

Die große Protonenleitfähigkeit ist für viele biochemische Vorgänge von entscheidender Bedeutung ⇒ Transmembrane Protonenpumpen Protonensprungmechanismus für Hydroniumionen in wäßr. Lösungen



8.7 Wasserstoffperoxid

Reines H₂O₂ ist eine leicht bläuliche Flüssigkeit hoher Viskosität

Struktur

Zwei OH-Einheiten, die in einem Winkel, dem Diederwinkel, von 111° zueinander stehen

Lange O-O Bindung "Sollbruchstelle" \rightarrow 2 OH-Radikale

Reaktivität

- H_2O_2 ist thermodynamisch instabil $2 H_2O_2(l) \rightarrow 2 H_2O(l) + O_2(g) \quad \Delta G_R = -117 \text{ kJ/mol}$
- Handelsüblichen Lösungen von $30-35\%~H_2O_2$ in H_2O werden häufig Stabilisatoren zugesetzt, um den Zerfall zu verlangsamen
- Der Zerfall wird durch Metalle, Staub, Blut, Licht, Metalloxide, etc. katalysiert
- Starkes Oxidationsmittel
- Das Peroxidanion O_2^{2-} ist eine sehr starke Base:

$$Na_2O_2(s) + 2 H_2O(l) \rightarrow 2 NaOH(aq) + H_2O_2(aq)$$

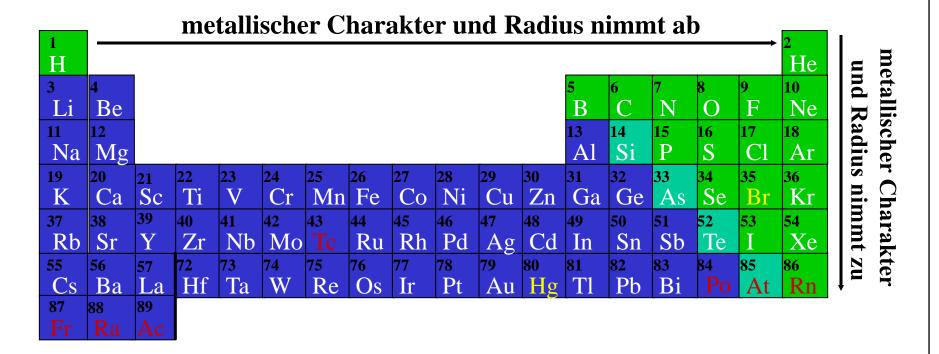
9. Ionenbindung und Salze

Gliederung

- 9.1 Eigenschaften ionischer Verbindungen
- 9.2 Ionenradien
- 9.3 Polarisierung und Kovalenz
- 9.4 Hydratation von Ionen
- 9.5 Ionische Strukturen
- 9.6 Gitterenergie von Ionenkristallen
- 9.7 Nomenklatur von Salzen

Steinsalz NaCl

Zu "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. steinsalz jpg


Sylvin KCl

Zu "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. sylvin.jpg

9.1 Eigenschaften ionischer Verbindungen

Ionenverbindungen entstehen durch Vereinigung von ausgeprägt metallischen Elementen mit ausgeprägt nicht metallischen Elementen

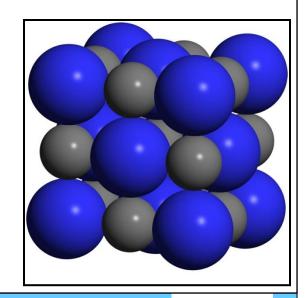
Bei einer Ionenbindung gehen Elektronen formal vollständig von Atomen einer Sorte auf Atome einer anderen Sorte über:

$$Na^{0} (1s^{2}2s^{2}2p^{6}3s^{1}) + Cl^{0} (1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}) \rightarrow Na^{+} (1s^{2}2s^{2}2p^{6}) Cl^{-} (1s^{2}2s^{2}2p^{6}3s^{2}3p^{6})$$

Allgemeine Chemie Prof. Dr. T. Jüstel

Folie 15

9.1 Eigenschaften ionischer Verbindungen


Typische Ionenverbindungen sind Alkalimetallhalogenide, z.B. Kochsalz NaCl

Makroskopische Eigenschaften

- Harte und spröde Festkörper (aus Ionen aufgebaute Kristalle)
- Hohe Schmelzpunkte
- Niedrige elektrische Leitfähigkeit
- Schmelze hat hohe elektrische Leitfähigkeit
- (Gute) Löslichkeit in polaren Lösungsmitteln (H₂O)
- Lösungen sind elektrisch leitend

Struktureller Aufbau

- Aus kugelförmigen Kationen und Anionen bestehend
- Bindungskräfte sind ungerichtet
- Die Ionen versuchen eine möglichst dichte Anordnung zu bilden, wobei jedes Ion von möglichst vielen Ionen entgegengesetzter Ladung umgeben ist

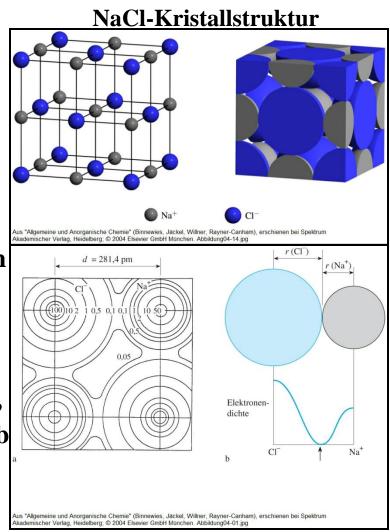
Allgemeine Chemie Prof. Dr. T. Jüstel

9.2 Ionenradien

Der Ionenradius hängt von der Stärke der Kern-Elektronen-Wechselwirkung ab

Trends

- Kationen sind kleiner als Anionen
- In den Hauptgruppen nimmt der Ionenradius mit steigender Ordnungszahl zu


$$Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$$

 $F^- < Cl^- < Br^- < I^-$

 Bei Ionen mit gleicher Elektronenkonfiguration nimmt der Radius mir zunehmender Ordnungszahl ab

$$O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+} (1s^22s^22p^6)$$

• Gibt es von einem Element mehrere pos. Ionen, nimmt der Radius mit zunehmender Ladung ab

$$Fe^{2+}$$
 (78 pm) > Fe^{3+} (65 pm)
 Pb^{2+} (119 pm) > Pb^{4+} (78 pm)

9.3 Polarisierung und Kovalenz

Die Kationen ziehen die Elektronen der Anionen an, so dass die Anionen verzerrt (polarisiert) werden ⇒ Kovalenz bzw. kovalenter Bindungscharakter

Fajans Regeln für die Polarisierung

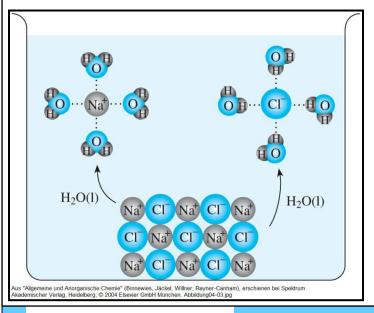
- 1. Ein Kation wirkt umso stärker polarisierend, je kleiner und je höher positiv geladen es ist
- 2. Ein Anion wird umso leichter polarisiert, je größer es ist und je höher seine negative Ladung ist
- 3. Polarisierung findet bevorzugt durch Kationen statt, die keine Edelgaskonfiguration haben

Maß für das Polarisierungsvermögen

$$Ladungsdichte = \frac{Ionenladung}{Ionenvolumen} = \frac{Formalladung \cdot 1.602 \cdot 10^{-19} [C]}{\frac{4}{3} \pi \cdot Ionenradius^{3} [mm^{3}]}$$

<u>Ion</u>	r [pm]	[C/mm ³]		
Na^+	102	36		
Al ³⁺	54	729		
(gilt für Koordinationszahl 6)				

Allgemeine Chemie Prof. Dr. T. Jüstel


9.4 Hydratation von Ionen

Zur Stabilisierung werden Ionen mit hoher Ladungsdichte solvatisiert bzw. in Wasser hydratisiert

Vorgänge beim Lösen von Salzen in Wasser

a) NaCl

$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

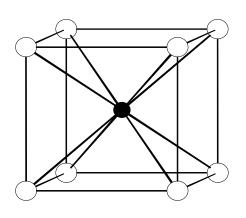
$$AlCl_3 \cdot 6H_2O(s) \rightarrow Al(H_2O)_6^{3+}(aq) + Cl^{-}(aq)$$

Al³⁺ hat eine so hohe Ladungsdichte, dass es auch im festen Zustand hydratisiert vorliegt \Rightarrow [Al(H₂O)₆]Cl₃

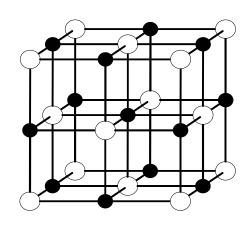
Hydratisierung: Ion/Dipolwechselwirkung (Das H₂O-Molekül ist ein starker Dipol!)

Die kugelförmigen Ionen versuchen eine möglichst dichte Anordnung zu bilden und die Abstoßung zwischen gleichgeladenen Ionen zu minimieren

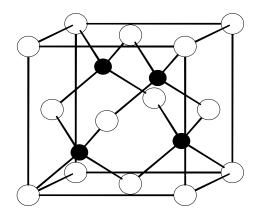
Die Kationen sind in der Regel kleiner als die Anionen, so dass die Koordinationsverhältnisse im Gitter durch die Koordinationszahl KZ des Kations (die Anzahl Anionen, von denen es umgeben ist) bestimmt ist.


 \Rightarrow KZ hängt vom Radienquotienten r_{Kation}/r_{Anion} ab

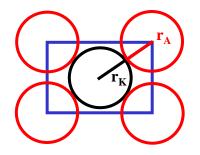
Radienquotient	KZ	Geometrie der Anordnung	Beispiel
1	12	Kuboktaeder	Cu
0.732 - 0.999	8	Würfel	CsCl
0.414 - 0.732	6	Oktaeder	NaCl
0.225 - 0.414	4	Tetraeder	ZnS
$r_{\text{Kation}}/r_{\text{Anion}} = 1$			Anionen berühren sich im Kuboktaeder!


Allgemeine Chemie Prof. Dr. T. Jüstel

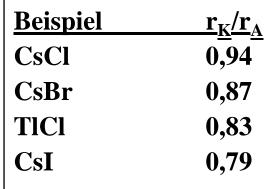
Die wichtigsten Strukturtypen der Zusammensetzung AB

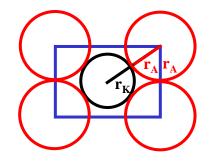

Die Koordinationzahl eines Kations hängt vom Radienquotienten r_K/r_A ab

CsCl (**KZ**: 8)

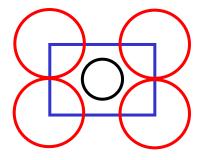

NaCl (KZ: 6)

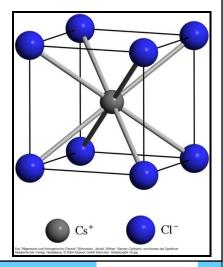
ZnS (KZ: 4) Zinkblende


Der kritische Radienquotient r_K/r_A darf nicht unterschritten werden!


Für $r_K/r_A > 0.732$ tritt der Cäsiumchloridstrukturtyp (CsCl-Gitter) auf

Anionen berühren sich nicht


$$r_{K}/r_{A}=1$$

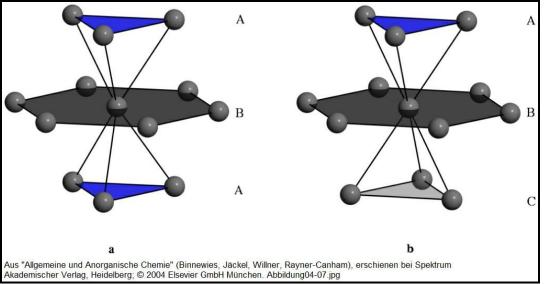


Anionen berühren sich

$$(\mathbf{r}_{K} + \mathbf{r}_{A})/\mathbf{r}_{A} = \sqrt{3}/1$$

 $\mathbf{r}_{K}/\mathbf{r}_{A} = \sqrt{3}/1 - 1 = 0,732$

Anionen können sich dem Kation nicht weiter nähern $r_K/r_A < 0.732$

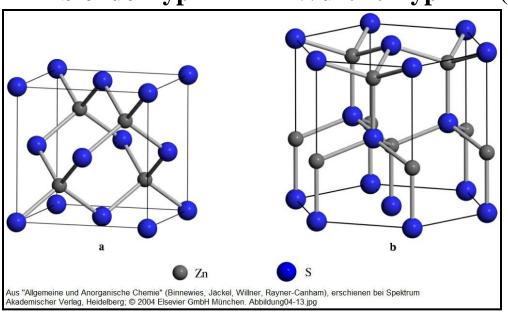

Für $0.414 < r_K/r_A < 0.732$ wird das Kation oktaedrisch koordiniert

Der Strukturtyp hängt hier von der Packung der Anionen ab

Anionenpackung Schichtenfolge Strukturtyp

Beispiel	r_{K}/r_{A}
KBr	0,71
KI	0,64
NaCl	0,56
NaBr	0,52
NaI	0,47

hexagonal-dicht kubisch-dicht
ABABAB ABCABCABC
NiAs-Typ NaCl-Typ


Für $r_K/r_A < 0.414$ wird das Kation tetraedrisch koordiniert

Der Strukturtyp hängt auch hier von der Packung der Anionen ab

Anionenpackung Schichtenfolge Strukturtyp

Beispiel	r_{K}/r_{A}
BeO	0,25
BeS	0.19

kubisch-dicht
ABCABCABC
ABABAB
Zinkblende-Typ
Wurtzit-Typ (ZnS)

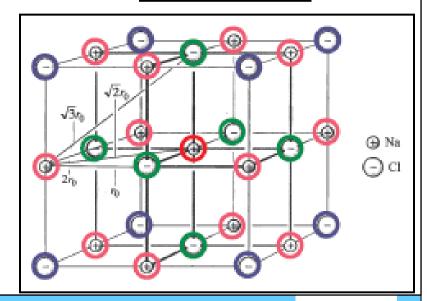
9.6 Gitterenergie von Ionenkristallen

Die Gitterenergie von Kristallen ist die Energiemenge, die frei wird, wenn sich die Ionen aus unendlicher Entfernung einander nähern und zu einem Ionenkristall ordnen

Ein Ionenpaar hat eine elektrostatische potentielle Energie, die von der Ladung und

vom Abstand abhängt ⇒ Coulomb-Energie

 $E_{C} = \frac{z_{K} \cdot z_{A} \cdot e^{2}}{4\pi \cdot \varepsilon_{0} \cdot r}$

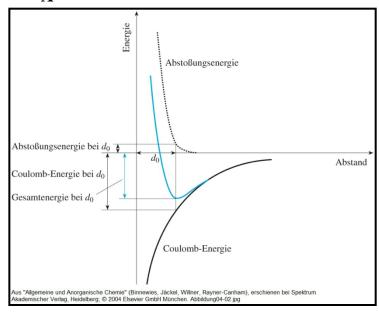

Beispiel: NaCl-Kristall: $z_{\underline{K}} = -z_{\underline{A}}$

Na⁺-Ion

- 6 neg. Nachbarn im Abstand r
- 12 pos. Nachbarn im Abstand $\sqrt{2}$ r
- 8 neg. Nachbarn im Abstand $\sqrt{3}$ r

$$\Rightarrow \boxed{E_C = -\frac{z_K^2 \cdot e^2}{4\pi \cdot \epsilon_0 \cdot r} \cdot \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \dots\right)}$$

Geometrieterm A

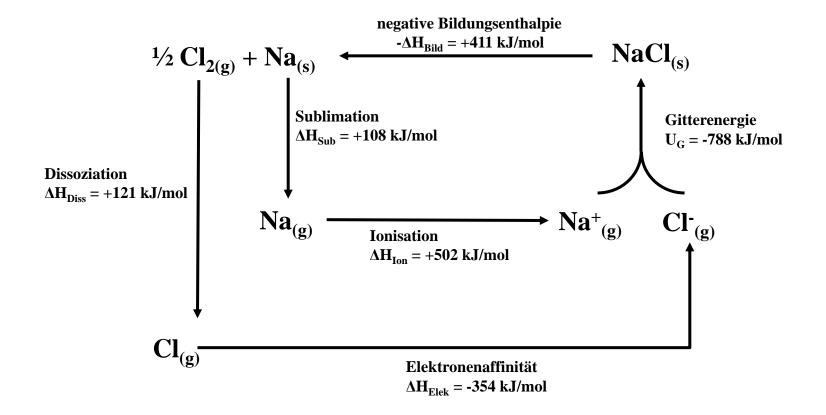

9.6 Gitterenergie von Ionenkristallen

Der Konvergenzwert des Geometrieterms wird als Madelungkonstante A bezeichnet (er ist charakteristisch für den Strukturtyp)

$$E_{C} = -\frac{z_{K} \cdot z_{A} \cdot e^{2}}{4\pi \cdot \varepsilon_{0} \cdot r} \cdot A \cdot N_{A}$$

Coulombenergie für $1 \text{ mol } (N_A)Atome$

Strukturtyp		Madelungkonstante A
CsCl	\mathbf{AB}	1,7627
NaCl	\mathbf{AB}	1,7476
Wurtzit	\mathbf{AB}	1,6413
Zinkblende	\mathbf{AB}	1,6381
Fluorit	AB_2	5,0388
Rutil	AB_2	4,8160
Korund	A_2B_3	25,0312


Gitterenergie U_g = Coulombenergie + Abstoßungsenergie $U_g = -\frac{z_K \cdot z_A \cdot e^2}{4\pi \cdot \epsilon_0 \cdot r} \cdot A \cdot N_A + \frac{B}{r^n}$ mit B, n = Konstanten

$$U_{g} = -\frac{z_{K} \cdot z_{A} \cdot e^{2}}{4\pi \cdot \varepsilon_{0} \cdot r} \cdot A \cdot N_{A} + \frac{B}{r^{n}}$$

9.6 Gitterenergie von Ionenkristallen

Born-Haber-Kreisprozess

Beispiel: Bildung von NaCl (Kochsalz)

Allgemeine Chemie Prof. Dr. T. Jüstel

9.7 Nomenklatur von Salzen

Salzname = Kationenname + Anionenname

Bildung des Kationnamens

einatomig mehratomig

Metallname + Oxidationsstufe Endung "-onium"

 Cu^+ Kupfer(I) NH_4^+ Ammonium

Cu²⁺ Kupfer(II) PH₄⁺ Phosphonium

Bildung des Anionennamens

Einatomig mehratomig

Elementname + Endung "-id"

N³- Nitrid CN Cyanid

P³- Phosphid CO₃²- Carbonat

As³- Arsenid ClO₄- Perchlorat

Sb³⁻ Antimonid CrO_4^{2-} Chromat

 S^{2-} Sulfid SO_3^{2-} Sulfit

10. Atombindung

Gliederung

- 10.1 Allgemeines
- 10.2 Lewis-Konzept
- 10.3 Dative Bindung
- 10.4 Atom- vs. Ionenbindung
- **10.5 Dipole und Dipolmoment**
- 10.6 Elektronegativität
- 10.7 Dipol/Dipol-Wechselwirkungen
- 10.8 Wasserstoffenbrückenbindungen
- 10.9 Valenzbindungstheorie
- 10.10 Molekülorbitaltheorie
- 10.11 Nomenklatur binärer Molekülverbindungen

10.1 Allgemeines

Atombindungen (kovalente oder homöopolare Bindungen) sind gerichtete Wechselwirkungen zwischen Atomen, bei der zwischen den Atomen eine hohe Elektronendichte besteht.

Sie tritt dann auf, wenn Nichtmetallatome miteinander eine chemische Bindung eingehen, wobei sich Moleküle bilden:

$$H \cdot + H \cdot \rightarrow H - H$$

"Prinzip der Elektronenpaarbindung"

$$|\underline{\overline{\mathbf{C}}}\mathbf{l}\cdot\ +\ |\underline{\overline{\mathbf{C}}}\mathbf{l}\cdot\
ightarrow\ |\ \underline{\overline{\mathbf{C}}}\mathbf{l}-\underline{\overline{\mathbf{C}}}\overline{\mathbf{l}}\ |$$

Gemeinsame Elektronenpaare werden beiden Bindungspartnern zugerechnet

$$\dot{\underline{N}} + \dot{\underline{N}} \rightarrow |\underline{N} \equiv \underline{N}$$

$$\dot{\cdot}\dot{C}\dot{\cdot} + 2\dot{\underline{O}}\dot{\underline{O}} \rightarrow (\underline{\overline{O}}) + 2\dot{\underline{O}}\dot{\underline{O}}$$

10.2 Lewis-Konzept

Die Lewis-Theorie besagt, dass jedes Atom in einem Molekül die Edelgaskonfiguration erreichen will, um einen stabilen Zustand zu erreichen

Wasserstoff Andere Elemente	He-Konfiguration Ne/Ar/Kr/Xe-Konfiguration		n ⇒ Oktettr	regel
Hauptgruppe	4	5	6	7
2. Periode	\mathbf{C}	${f N}$	O	${f F}$
3. Periode	Si	P	\mathbf{S}	Cl
Elektronen- konfiguration Bindigkeit	s p ↑↓ ↑↑ 2 (4)	$\begin{array}{ccc} \mathbf{s} & \mathbf{p} \\ \uparrow \downarrow & \uparrow \uparrow \uparrow \uparrow \end{array}$	s p ↑↓ ↑↓↑↑ 2	s p ↑↓↑↑↓↑ 1
Einfache Wasser- stoffverbindungen	CH ₄ SiH ₄	NH ₃ PH ₃	H_2O H_2S	HF HCl

Folie 31

Allgemeine Chemie

Prof. Dr. T. Jüstel

10.2 Lewis-Konzept

Die 4-Bindigkeit des Kohlenstoffs entsteht durch die elektronische Anregung eines 2s-Elektrons

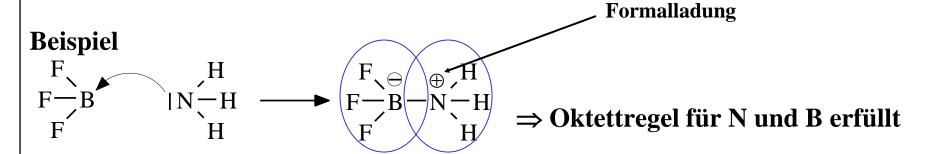
Atom/Ion	Elektronenkonfiguration	Bindig-	Außenelektronen	Beispiele
	1s 2s 2p	keit	im Bindungszustand	<u></u>
Li	$\uparrow\downarrow$ \uparrow	1	2	LiH
Be*	$\uparrow\downarrow$ \uparrow \uparrow	2	4	$BeCl_2$
B *	$\uparrow\downarrow$ \uparrow \uparrow	3	6	BF_3
B-, C*, N+	$\uparrow\downarrow$ \uparrow \uparrow \uparrow	4	8	BF ₄ -, CH ₄ , NH ₄ +
N, O ⁺	$\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow \uparrow	3	8	NH_3, H_3O^+
O, N-	$\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow \uparrow	2	8	H_2O , NH_2
O-, F	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	1	8	OH-, HF
O ²⁻ , F-, Ne	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$	0	-	-

Allgemeine Chemie Prof. Dr. T. Jüstel Folie 32

10.2 Lewis-Konzept

Elemente der dritten und höheren Perioden erfüllen auch die Oktettregel, wenn nur s- und p-Orbitale an der Bindung beteiligt sind. Allerdings können auch d-Orbitale an der Bindung teilnehmen ⇒ 18-Elektronenregel

Atom/Ion	Elektronenko	nfiguration	Bindig-	Außenelektronen	Beispiele
	3s 3p	3d	keit	im Bindungszustan	<u>d</u>
Na	↑		1	2	-
Mg*	\uparrow		2	4	-
Al*	\uparrow \uparrow \uparrow		3	6	AlCl ₃
Si*	\uparrow \uparrow \uparrow		4	8	SiCl ₄
P	$\uparrow \downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$		3	8	PH ₃
P*	$\uparrow \qquad \uparrow \qquad \uparrow$	↑	5	10	PF ₅
S	$\uparrow\downarrow \qquad \uparrow\downarrow \uparrow \qquad \uparrow$		2	8	H_2S
S*	$\uparrow\downarrow$ \uparrow \uparrow	↑	4	10	SF_4
S**, Si ²⁻ , P-	\uparrow \uparrow \uparrow \uparrow	\uparrow \uparrow	6	12	SF ₆
Cl	$\uparrow\downarrow$ $\uparrow\downarrow\uparrow\downarrow$ \uparrow		1	8	HCl
Cl*	$\uparrow\downarrow$ \uparrow \uparrow	↑	3	10	ClF ₃


Folie 33

Allgemeine Chemie

Prof. Dr. T. Jüstel

10.3 Dative Bindung

Die Bindungselektronen einer kovalenten Bindung können auch ausschließlich von einem Bindungspartner stammen ⇒ Dative oder koordinative Bindung

Die Formalladung erhält man also, wenn man die Bindungselektronen auf die beiden Bindungspartner zu gleichen Teilen aufteilt (Homolyse)

$$C \equiv O$$

Die reale Verteilung der Bindungselektronen hängt von der Fähigkeit der Bindungspartner ab, Elektronen anzuziehen (elektronenziehender Charakter)

10.4 Atom- vs. Ionenbindung

In chemischen Verbindungen liegen meistens weder reine Ionen- noch reine Atombindungen vor!

KCl K ist schwach und Cl stark elektronenziehend

"Ionenbindung"

K

Cl

Cl₂ Beide Partner gleich stark elektronenziehend

"Atombindung"

Cl

Cl

| Cl ◀F | F ist stärker elektronziehend

"polare Atombindung"

T

Wovon hängt die Polarität kovalenter Bindungen ab?

- 1. Anionen (Polarisierbarkeit bzw. Größe)
- 2. Kationen (Ladungsdichte bzw. die Fähigkeit die Anionen zu polarisieren)

10.5 Dipole und Dipolmomente

In Molekülen mit polaren Atombindungen treten partielle elektrische Ladungen auf, welche in einem permanenten Dipolmoment resultieren können

Dipolmoment

$$\mu = \mathbf{q} \cdot \mathbf{d}$$

mit d = Abstand [m], q = Ladung [C]

HCl

$$\delta$$
+ δ - H — $C1$

 $\begin{array}{ccc} & \mathbf{CO_2} \\ \delta - & \delta + & \delta - \end{array}$ O = C = O

Permanenter Dipol

Kein permanenter Dipol

Das gefundene Dipolmoment ist ein Maß für den Ionencharakter (Linus Pauling)

$$\mu = 1,60\cdot10^{-19} \text{ C} \cdot 127\cdot10^{-12} \text{ m} = 2,03\cdot10^{-29} \text{ Cm}$$

HCl (Experiment)
$$\mu = 3,44\cdot10^{-30}$$
 Cm

$$3,44\cdot10^{-30}/2,03\cdot10^{-29}$$
 Cm * $100\% = 16,9\%$

Die Elektronegativität (X_E) einer Atom- oder Ionensorte beschreibt deren Vermögen, in einer chemischen Bindung die Elektronen an sich zu ziehen

Die Elektronegativität (EN) ist experimentell nicht messbar!

Für die Festlegung der EN-Werte sind mehrere Formalismen entwickelt worden:

- 1. Pauling
- 2. Allred und Rochow
- 3. Mulliken
- 4. Allen

Die EN-Werte sind im Periodensystem tabelliert!

Je größer die Differenz der EN-Werte, desto polarer ist die Atombindung bzw. desto höher ist der Ionenbindungscharakter

Pauling bestimmte die EN-Werte aus der Abweichung der Dissoziationsenergie D der homonuklearen Verbindungen von den entsprechend heteronuklearen Verbindungen

$$\Rightarrow$$
 D(AB) = $\frac{1}{2}$ [D(A₂) + D(B₂)]+ Δ

 Δ notwendig, da eine Abweichung vom arithmetischen Mittel beobachtet wird!

Beispiel:
$$D(H_2) = 435 \text{ kJ/mol}$$

$$D(Cl_2) = 243 \text{ kJ/mol}$$
 \Rightarrow arithmetisches Mittel = 339 kJ/mol

$$D(HCl)_{exp} = 431 \text{ kJ/mol} \implies \Delta = 92 \text{ kJ/mol}$$

Dieser stabilisierende Beitrag Δ wird durch dipolare Anordnungen verursacht A^+B^-

$$\Delta = 96 \cdot (\chi_H - \chi_{Cl})^2$$
 Bezugspunkt notwendig: $\chi_H = 2.2$

$$\Rightarrow \chi_{Cl} = 3,2$$
 Höchster Wert: $\chi_F = 4,0$

Allred und Rochow bestimmten die EN-Werte nach einem elektrostatischen Ansatz

Physikalische Grundlage: Die Elektronegativität χ ist ein Maß für die auf ein Valenzelektron wirkende Coulomb-Kraft F_C

$$\chi \sim F_c \sim Z^*/r^2$$

$$r = Atomradius, Z^* = effektive Kernladungszahl$$

= $OZ - \Sigma S_i$

 $S_i = Abschirmungskonstanten (nach Slater)$

S_i = 0,0 für höhere Schalen 0,35 für gleiche Schale

0,85 für einfach niedrigere Schale (s- und p-Elektronen)

1,00 für einfach niedrigere Schale (d- und f-Elektronen)

1,00 für mehrfach niedrigere Schale (alle Elektronen)

Anpassung an die Pauling-Skala:

$$\chi = 0.359 \sim Z^*/r^2 + 0.744$$

EN-Werte nach Pauling und nach Allred und Rochow

	,					Elek	ktroi	nega	tivit	ät ni	mmt	t zu					
H	'							<u> </u>								→	He
2.2																	
2.2																	
Li	Be											В	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.4	4.0	
1.0	1.5											2.0	2.5	3.1	3.5	4.1	
Na	Mg											Al	Si	P	S	Cl	Ar
0.9	1.3											1.6	1.9	2.2	2.6	3.2	
1.0	1.2						_				_	1.5	1.7	2.1	2.4	2.8	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.4	1.5	1.6	1.7	1.6	1.8	1,9	1.9	1.9	1.7	1.8	2.0	2.2	2.6	3.0	
0.9	1.0	1.2	1.3	1.4	1.6	1.6	1.6	1.7	1.8	1.8	1.7	1.8	2.0	2.2	2.5	2.7	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0.8	1.0	1.2	1.3	1.6	2.2	1.9	2.2	2.3	2.2	1.9	1.7	1.8	1.8	2.1	2.1	2.7	
0.9	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.4	1.4	1.5	1.5	1.7	1.8	2.0	2.2	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi			
0.8	0.9	11	13	15	2.4	19	2.2	2.2	2.3	2.5	2.0	2.0	19	2.0			

Edelmetalle haben nach Pauling eine relativ hohe Elektronegativität!

1.4

1.4

1.4

1.4

1.5

1.7

1.5

1.5

1.5

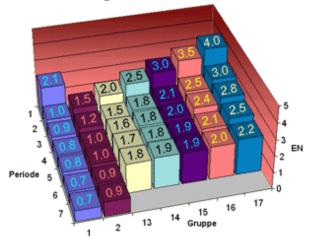
Allgemeine Chemie Prof. Dr. T. Jüstel

1.0

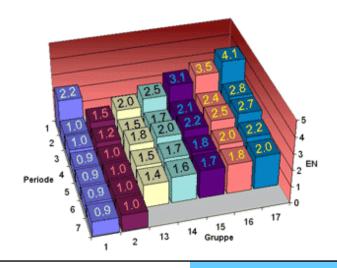
1.1

0.9

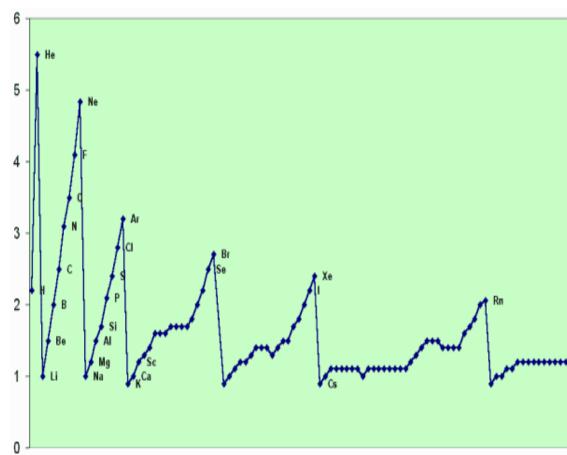
1.2


1.3

1.4

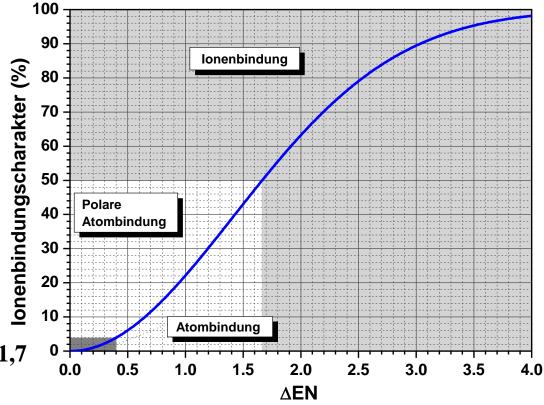

Folie 40

Elektronegativitäi nimmt ah


Nach Pauling

Nach Allred und Rochow

Periodizität der EN-Werte nach Allred und Rochow


Edelgase haben nach Allred und Rochow die höchsten Elektronegativitäten!

Die Differenz der EN-Werte der Bindungspartner in einer bestimmten chemischen Bindung bestimmt den Bindungstyp

Je größer die Differenz in den EN-Werten ist (Δ EN), desto polarer ist die Atombindung bzw. desto höher ist der Ionenbindungscharakter P [%]

Nach Pauling

$$P = \left(1 - e^{-0.25(EN_A - EN_B)^2}\right) \cdot 100\%$$

Resultat:

Atombindung

Polare Atombindung $0.4 < \Delta$

Ionenbindung

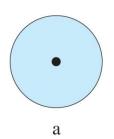
 $\Delta EN < 0,4$

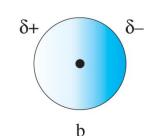
 $0,4 < \Delta EN < 1,7$

 $\Delta EN > 1,7$

10.7 Dipol-Dipol-Wechselwirkung

Die Wechselwirkung zwischen Dipolen führt zu einer Anziehung benachbarter Moleküle (Dispersionskraft oder Van-der-Waals-Wechselwirkung)


Temporäre Dipole


Edelgase

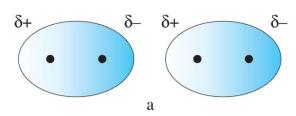
 CH_4

SiH₄

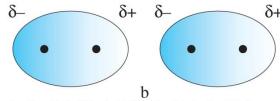
GeH₄

schwache intermolekulare WW

Aus "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum


Permanente Dipole

HF

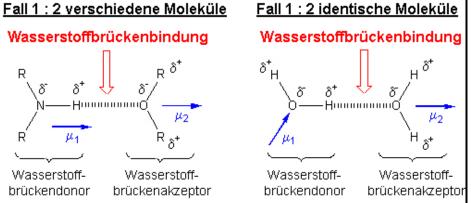

HCl

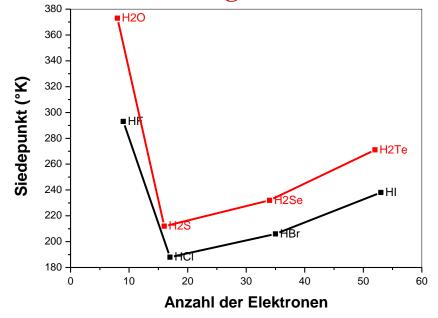
HBr

HI

stärkere intermolekulare WW

Aus "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum Akademischer Verlag. Heidelberg: © 2004 Elsevier GmbH München. Abbildung05-25 jpg


10.8 Wasserstoffbrückenbindungen


Wasserstoffbrückenbindungen sind die stärksten intermolekularen Wechselwirkungen, die auftreten, wenn Wasserstoff an ein stark elektronegatives Atom

gebunden ist.

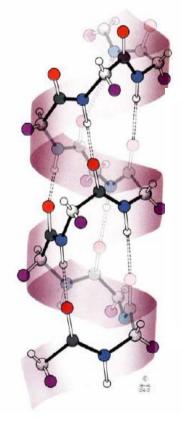
Stärke der X-H····X Bindung

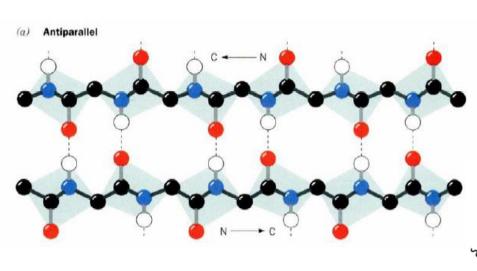
- 2 60 kJ/mol
- H-F > O-H > N-H

H₂O hat einen höheren Siedepunkt als HF, da jedes Sauerstoffatom zwei freie Elektronenpaare hat

brückenakzeptor ⇒ Anomalie des Wassers!

10.8 Wasserstoffbrückenbindungen


Wasserstoffbrückenbindungen sind von fundamentaler Bedeutung für die Strukturen in der Biologie, z.B. für die räumliche Struktur der Proteine und DNA

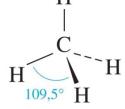

α-Helices in Proteinen

B-Faltblätter in Proteinen

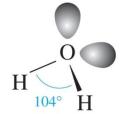
Basenpaarungen in DNA

A=T(2) oder $G\equiv C(3)$

Quellen: Wikipedia


10.9 Valenzbindungstheorie

Die chemische Bindung beruht auf der Überlappung von Atomorbitalen


Prinzipien der VB-Theorie

- 1. Eine kovalente Bindung beruht auf dem Zusammenschluss ungepaarter Elektronen zu gemeinsamen Elektronenpaaren
- 2. Die Spins der gepaarten Elektronen müssen antiparallel sein
- 3. Damit die maximale Anzahl von Bindungen gebildet werden kann, nimmt man an, dass Elektronen vor der Bindungsbildung angeregt werden und leere Orbitale besetzen
- 4. Die Struktur des Moleküls wird durch die Geometrie der Orbitale des Zentralatoms bestimmt

Die tatsächlich gefundenen
Molekülgeometrien können
aber nicht immer durch reine
s-, p- und d-Orbitale
erklärt werden ⇒ Hybridisierung (Modell)

10.9 Valenzbindungstheorie

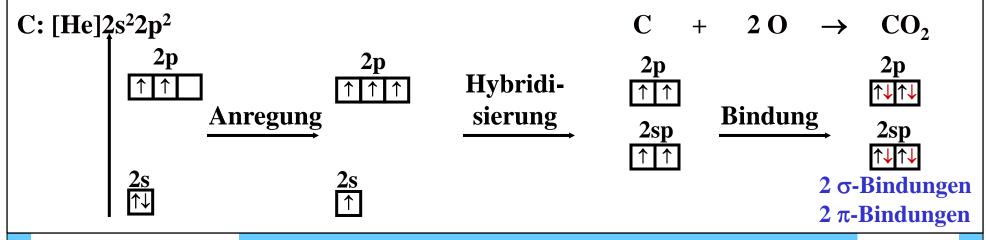
Unter Hybridisierung versteht man die Bildung von Misch(Hybrid)orbitalen durch die Kombination von Atomorbitalen

s-Orbital

p-Orbital

= sp, sp² oder sp³-Orbital

Hybridorbitale überlappen besser und führen somit zu stabileren (kovalenten) Bindungen

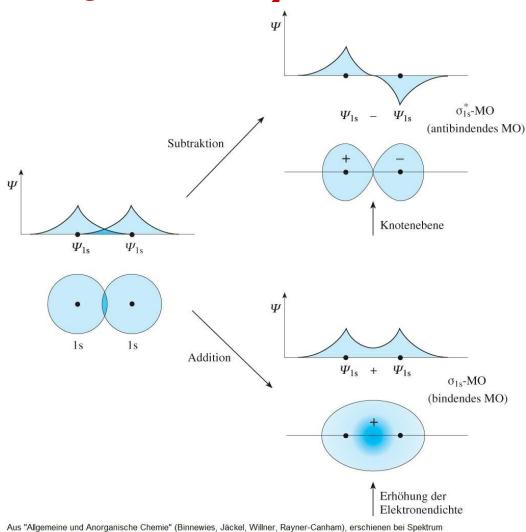

Anzal	Anzahl beteiligter Orbitale		Art der	Anzahl der	Anordnung	Beispiel
S	р	d	Hybridisierung	Hybridorbitale	der Orbitale	
1	1	0	sp	2	linear	BeF_2
1	2	0	sp^2	3	trigonal-planar	BF_3
1	3	0	sp^3	4	tetraedrisch	$\mathbf{CF_4}$
1	3	1	$\mathrm{sp}^3\mathrm{d}$	5	trigonal-bipyramidal	PF ₅
1	3	2	$\mathrm{sp}^{3}\mathrm{d}^{2}$	6	oktaedrisch	SF ₆
1	3	3	$\mathrm{sp^3d^3}$	7	pentagonal-bipyramidal	IF ₇

Allgemeine Chemie Prof. Dr. T. Jüstel

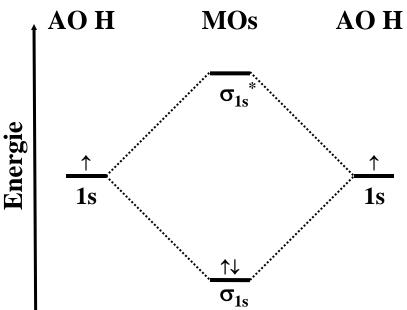
Folie 47

10.9 Valenzbindungstheorie

Hybridisierung am Beispiel der Bindungssituation im BF3 und CO2


Allgemeine Chemie Prof. Dr. T. Jüstel Folie 48

Molekülorbitale (MOs) entstehen durch Linearkombination, d.h. Summen- oder Differenzbildung, von Atomorbitalen gemäß $\psi=\psi_1+\psi_2$ bzw. $\psi=\psi_1+\psi_2$


Einige Aussagen über MOs

- 1. Atomorbitale (AOs) können nur überlappen, wenn die Wellenfunktionen in den entsprechenden Bereichen dasselbe Vorzeichen aufweisen
- 2. Aus zwei AOs bilden sich jeweils zwei MOs, nämlich ein bindendes und ein antibindendes MO
- 3. Eine signifikante Überlappung setzt voraus, dass die AOs eine ähnliche Energie aufweisen
- 4. Jedes MO enthält maximal zwei Elektronen mit einem Spin von +1/2 bzw. -1/2
- 5. Die Elektronenkonfiguration eines Moleküls ergibt sich in Analogie zu den Atomen durch die Besetzung der MOs in der Reihenfolge ansteigender Energie
- 6. Die Bindungsordnung (B.O.) ist die Hälfte der Differenz aus der Zahl der bindenden Elektronen minus der Zahl der antibindenden Elektronen

Bildung von MOs im H₂-Molekül

Energieniveau-Diagramm von H₂ (Molekülorbital-Diagramm)

(Energieniveaus werden im Diagramm als Striche dargestellt) B.O. $(H_2) = 1,0$

Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. Abbildung05-34.jpg

AO He

Bindungsordnung im H₂⁺ und He₂⁺

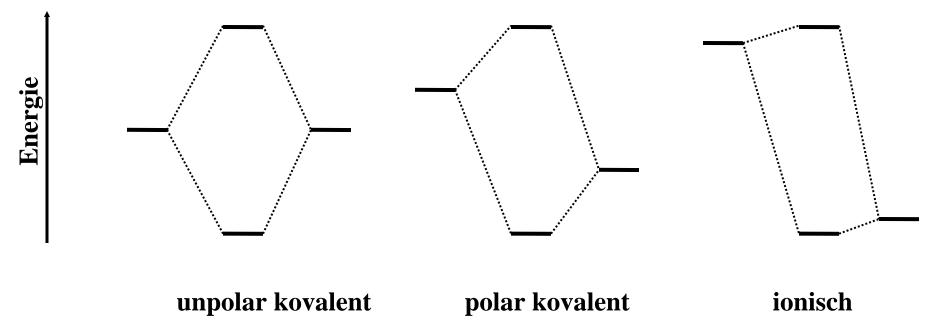
Molekülorbital-Diagramm für H₂⁺

Molekülorbital-Diagramm für He₂⁺

MOs

B.O. =
$$0.5*(1 - 0) = 0.5$$

B.O. =
$$0.5*(2-1) = 0.5$$


 \Rightarrow H₂⁺, HeH⁺ und He₂⁺ sind stabile Moleküle, He₂ nicht (Lit.: Nature 568 (2019) 357)

Energie

AO He⁺

Stabilität kovalenter Bindungen nach der MO-Theorie

1. Energie-Kriterium: Je ähnlicher die Energie zweier AOs, desto stärker ist die resultierende Energieabsenkung im bindenden MO

2. Überlappungskriterium: Für eine stabile Bindung müssen die wechselwirkenden AOs ausreichend überlappen

Stabilität kovalenter Bindungen nach der MO-Theorie

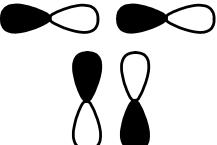
3. Symmetrie-Kriterium: Für eine stabile Bindung müssen die wechselwirkenden AOs bzgl. ihrer Symmtrie zusammenpassen

2s + 2s

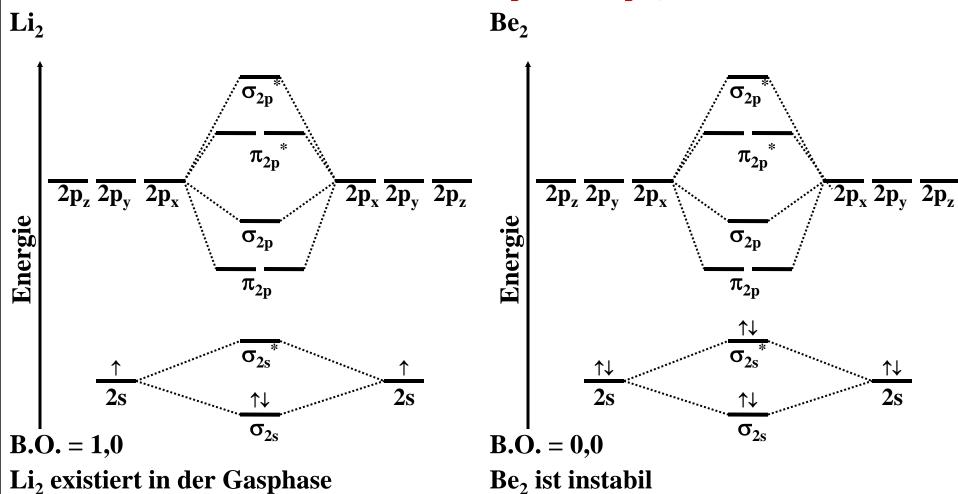
bindende WW

 $\Rightarrow \sigma$ -Bindung

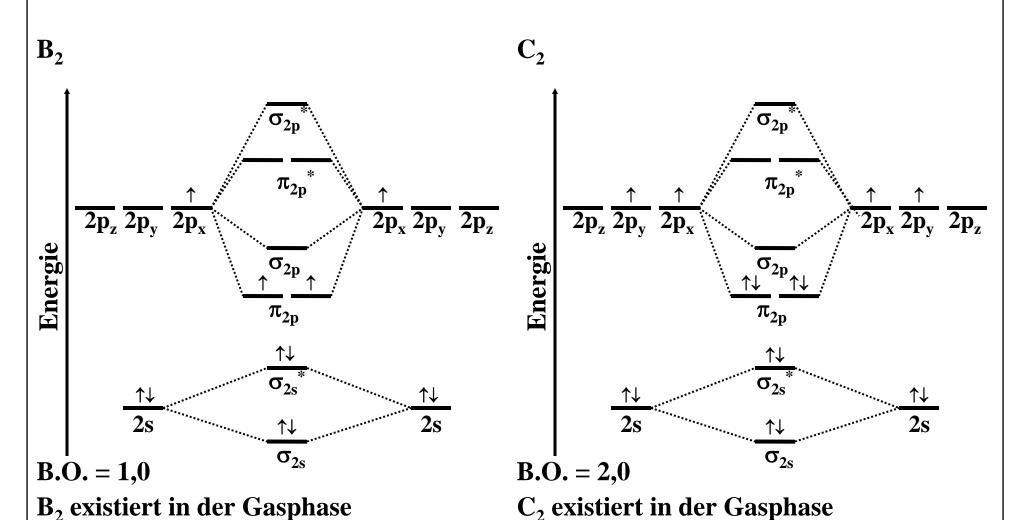
antibindende WW


$$2s + 2p_x$$

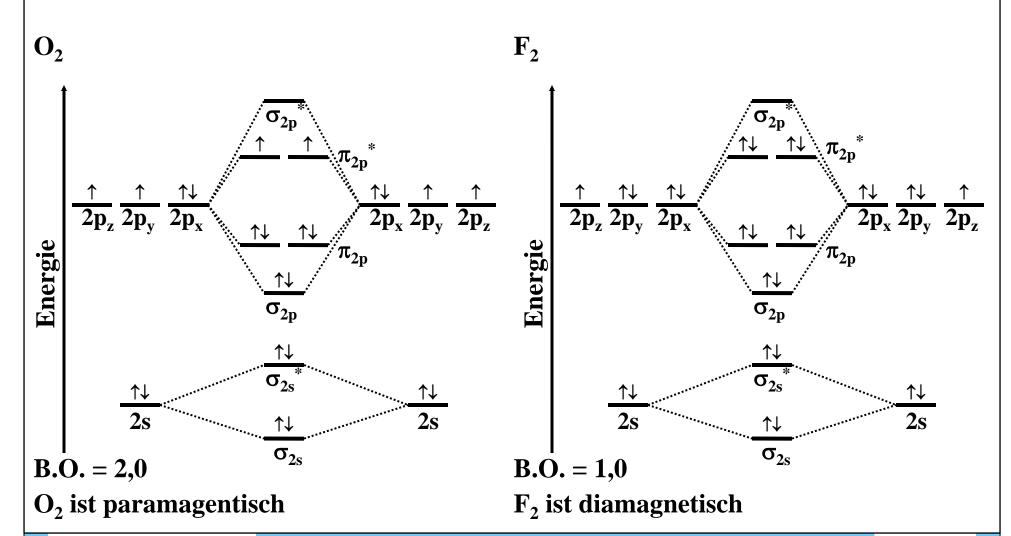
$$2p_x + 2p_x$$



$$\Rightarrow \sigma$$
-Bindung



$$2p_z + 2p_z$$

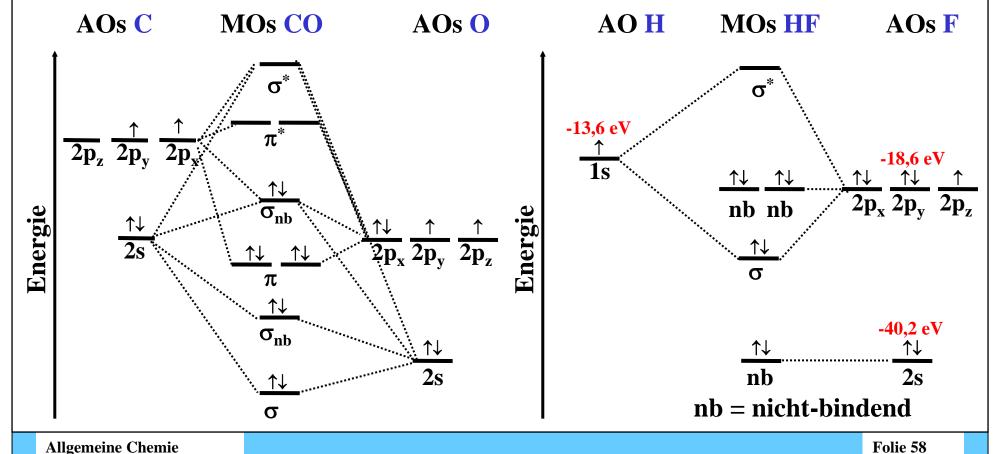

MO-Diagramme homonuklearer zweiatomiger Moleküle (energetische Reihenfolge der MOs via Ultraviolett-Photoelektronen-Spektroskopie, UPS)

MO-Diagramme homonuklearer zweiatomiger Moleküle

MO-Diagramme homonuklearer zweiatomiger Moleküle

Bindungseigenschaften homonuklearer zweiatomiger Moleküle

Molekül	Anzahl der	Bindungs-	Dissoziationsenergie Atomkernabstand				
oder Ion	Valenzelektronen	ordnung	[kJ/mol]	[pm]			
$\mathbf{H_2}^+$	1	0,5	256	106			
\mathbf{H}_{2}	2	1	432	74			
$\mathrm{He_2}^+$	3	0,5	~300	108			
He ₂	4	0	0	-			
Li ₂	2	1	105	267			
$\mathbf{Be_2}$	4	0	0	-			
$\mathbf{B_2}$	6	1	289	159			
C_2	8	2	628	131			
N_2	10	3	942	109			
O_2	12	2	494	121			
$\mathbf{F_2}$	14	1	151	142			
Ne ₂	16	0	0	-			


⇒ Ionisierte oder elektronisch angeregte Edelgasatome gehen Verbindungen ein!

Allgemeine Chemie Prof. Dr. T. Jüstel Folie 57

MO-Diagramme heteronuklearer zweiatomiger Moleküle

- ⇒ Die Energie der AOs der beiden Bindungspartner ist meist unterschiedlich
- ⇒ Die energetische Lage wird wieder mit der UPS bestimmt

Prof. Dr. T. Jüstel

10.11 Nomenklatur binärer Molekülverbindungen

Molekülname = Name des elektropositiveren Elements + Name des elektronegativeren Elements

Elektropositiveres Element

Deutscher Name: Stickstoff, Sauerstoff, Phosphor, Schwefel, Arsen, Selen, Antimon, Tellur, ...

Elektronegativeres Element

Lateinischer Name, dessen Endung durch -id ersetzt wird:

carbid, silicid, germanid, nitrid, phosphid, arsenid, oxid, sulfid, selenid, tellurid, ...

Beispiel	Name	<u>Präfix</u>	Zahl
N ₂ O	Distickstoffoxid	mono-	1
NO	Stickstoffmonoxid	di-	2
N_2O_3	Distickstofftrioxid	tri-	3
NO_2	Stickstoffdioxid	tetra-	4
N_2O_4	Distickstofftetroxid	penta-	5
N_2O_5	Distickstoffpentoxid	hexa-	6

Aber: Es gibt auch viele nichtsystematische Namen: Wasser, Ammoniak, Hydrazin, Lachgas

Allgemeine Chemie Prof. Dr. T. Jüstel Folie 59

11. Metallbindung

Gliederung

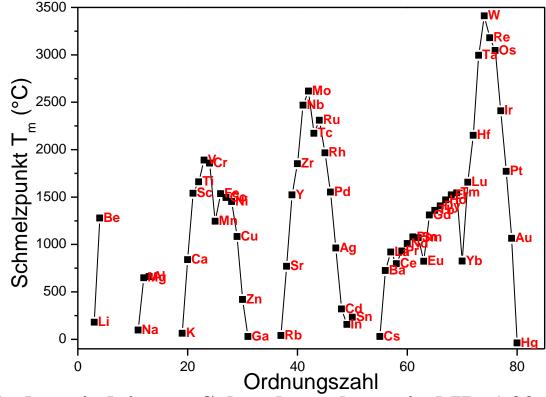
- 11.1 Eigenschaften von Metallen
- 11.2 Kristallstrukturen der Metalle
- 11.3 Radien von Metallatomen
- 11.4 Die metallische Bindung
- 11.5 Leiter, Eigenhalbleiter, Isolatoren
- 11.6 Dotierte Halbleiter
- 11.7 Vergleich der Bindungsarten

Atomium in Brüssel 1958 (Fe-Elementarzelle in 165·10¹²-facher Vergrößerung)

80% aller bekannten Elemente sind Metalle, die eine Reihe von gemeinsamen Eigenschaften haben

Typische Eigenschaften

- Niedrige Ionisierungsenergie (< 10 eV) bzw. elektropositiver Charakter, d.h. Metalle bilden leicht Kationen
- Metallischer Glanz der Oberfläche
- Dehnbarkeit und plastische Verformbarkeit
- Gute thermische und elektrische Leitfähigkeit, die mit steigender Temperatur abnimmt
- Metallische Eigenschaften bleiben in der Schmelze erhalten und gehen erst im Dampfzustand verloren
- ⇒ Metallische Eigenschaften sind also an die Existenz größerer Atomverbände gebunden


Die elektrische Leitfähigkeit hängt stark von der Elektronenkonfiguration ab

Li	Be													
11,8	18												-	
Na	Mg											Al		
23	25											40		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga		
15,9	23		1,2	0,6	6,5	20	11,2	16	16	65	18	2.2		
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb
8,6	3,3		2,4	4,4	23		8,5	22	10	66	15	12	10	2,8
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi
5,6	1,7	1,7	3,4	7,2	20	5,3	11	20	10	49	4,4	7,1	5,2	1

Elektrische Leitfähigkeit der s-,p-, d-Block Metalle bei 0 °C in $10^6~\Omega^{-1}$ m $^{-1}$

Die höchsten elektrischen Leitfähigkeiten haben die Elemente der 1. Nebengruppe (Gruppe 11) mit der Elektronenkonfiguration [Ar]3d¹⁰4s¹, [Kr]4d¹⁰5s¹, [Xe]5d¹⁰6s¹

Alle Metalle, mit Ausnahme von Quecksilber, sind bei Raumtemperatur Feststoffe

- Die Metalle mit den niedrigsten Schmelzpunkten sind Hg (-39 °C), Cs (29 °C), Ga (30 °C) und Rb (39 °C)
- Die höchsten Schmelzpunkte treten bei den valenzelektronenreichen Übergangsmetallen auf (z. B. Ti, V, Cr, Nb, Mo, Ru, Ta, W, Re)

Hauptgruppenmetalle treten in ein oder maximal zwei Oxidationsstufen auf, Nebengruppenmetalle (d-Block) können dagegen in vielen Oxidationsstufen auftreten

Bsp. Mangan: $\text{Mn}^0 \rightarrow [\text{Mn}(\text{H}_2\text{O})_4]\text{SO}_4 \rightarrow \text{MnO}(\text{OH}) \rightarrow \text{MnO}_2 \rightarrow \text{MnO}_4^{3-} \rightarrow \text{MnO}_4^{2-} \rightarrow \text{MnO}_4^{-3-} \rightarrow \text{MnO}_4^{3-} \rightarrow \text{MnO}_4^{$

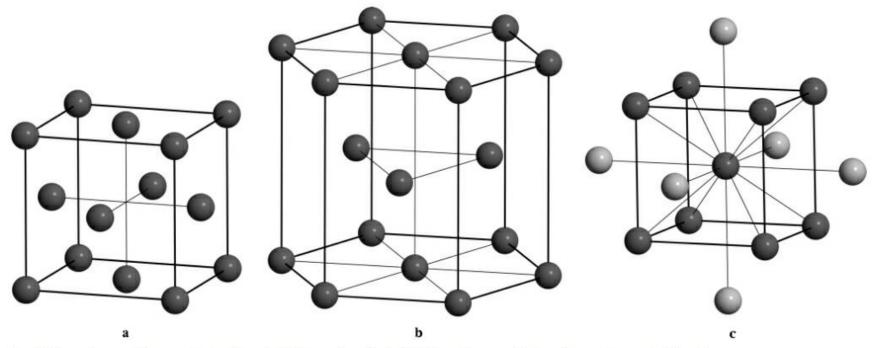
s^1	s ²	s^2p^1	s^2p^2	s^2p^3
Li	Be			
+1	+2			
Na	Mg	Al		
+1	+2	+3		
K	Ca	Ga		
+1	+2	+3		
Rb	Sr	In	Sn	Sb
. 1	. 2	. 1	. 3	. 2

Sc 3d ¹ 4s ²	Ti 3d ² 4s ²	V 3d ³ 4s ²	Cr 3d ⁵ 4s ¹	Mn 3d ⁵ 4s ²	Fe 3d ⁶ 4s ²	Co 3d ⁷ 4s ²	Ni 3d ⁸ 4s ²	Cu 3d ¹⁰ 4s ¹	$\begin{array}{c} Zn \\ 3d^{10}4s^2 \end{array}$
+3	+2 +3 +4	+2 +3 +4 +5	+2 +3 +4 +6	+2 +3 +4 +7	+2 +3	+2 +3	+2	+1 +2	+2
Sc ₂ O ₃	TiO Ti ₂ O ₃ TiO ₂	V ₂ O ₃ VO ₂ V ₂ O ₅	Cr ₂ O ₃ CrO ₂ CrO ₃	Mn ₂ O ₃ MnO ₂ Mn ₂ O ₆ Mn ₂ O ₇	FeO Fe ₂ O ₃	CoO Co ₂ O ₃	NiO	Cu ₂ O CuO	ZnO

"redoxlabile bzw. reaktive Ionen"

- \Rightarrow Metalloenzyme (z.B. Elektronentransport)
- ⇒ Katalysatoren (Redoxprozesse)

Allgemeine Chemie Prof. Dr. T. Jüstel


Cs

+1

Folie 64

11.2 Kristallstrukturen der Metalle

80% der metallischen Elemente kristallisieren in der A_1 -, A_2 - oder A_3 -Struktur

Aus "Allgemeine und Anorganische Chemie" (Binnewies, Jäckel, Willner, Rayner-Canham), erschienen bei Spektrum Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. Abbildung06-08.jpg

 A_1 -Typ

Kubisch-dicht

Koordinationszahl 12

Cu, Ag, Au, Ni, Pd, Pt, Rh, ...

A₃-Typ

Hexagonal-dicht

Koordinationszahl 12 Koordinationszahl 8

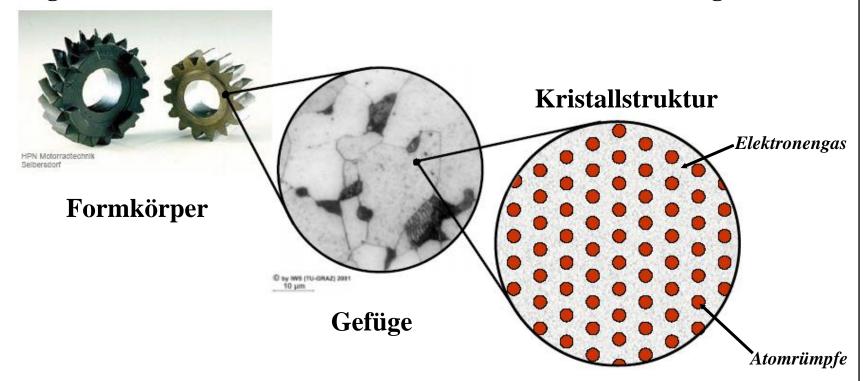
 A_2 -Typ

Kubisch-raumzentriert

Be, Mg, Y, La, Ti, Zr, ... Li, Na, K, Rb, Cs, Ba, ...

11.3 Radien von Metallatomen

Die Atomradien der Metalle können einfach aus ihrem kristallografisch bestimmten Elementstrukturen berechnet werden (Radius = halber interatomare Abstand)


Li 156	Be 112													
Na 237	Mg 160	Rac	lien	für	Koo	rdin	atio	nsza	ahl 1	2 in	pm	Al 143		
K 237	Ca 197	Sc 163	Ti 146	V 134	Cr 128	Mn 130	Fe 127	Co 125	Ni 124	Cu 128	Zn 137	Ga 140		
Rb 252	Sr 215	Y 181	Zr 160	Nb 146	Mo 139	Tc 135	Ru 134	Rh 134	Pd 137	Ag 144	Cd 152	In 166	Sn 158	
Cs 268	Ba 223	La 187	Hf 158	Ta 146	W 140	Re 137	Os 135	Ir 135	Pt 138	Au 144	Hg 155	Tl 171	Pb 174	Bi 182

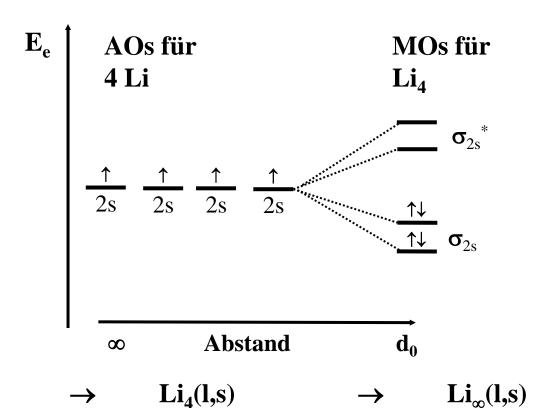
KZ	Radius
12	1,00
8	0,97
6	0,96
4	0,88

- Die Atomradien liegen also zwischen 110 und 270 pm
- Der Atomradius ist eine periodische Eigenschaft im Periodensystem
- Die Radien der 4d- und 5d-Metalle (5. und 6. Periode) sind wegen der Lanthanoidenkontraktion sehr ähnlich

Elektronengasmodell

Metalle bestehen aus kleinen Kristallen (Kristalliten). Die Atomrümpfe sind periodisch angeordnet und die Valenzelektronen bilden ein "Elektronengas"

Das Modell erklärt die hohe elektrische und thermische Leitfähigkeit, aber nicht die thermodynamischen (Wärmekapazität) oder die optischen Eigenschaften

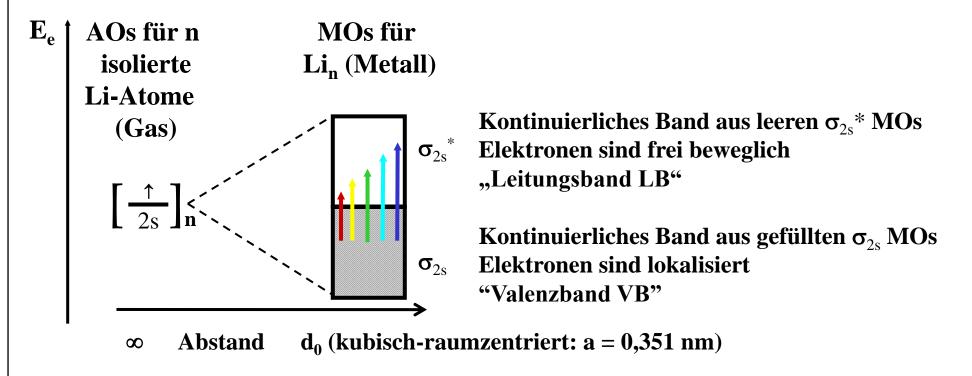

Energiebändermodell

Lithium in der Gasphase

 $\mathbf{E}_{\mathbf{e}}$ AOs für MOs für $\mathbf{Li}_{\mathbf{2}}$

 $Li_2(g)$

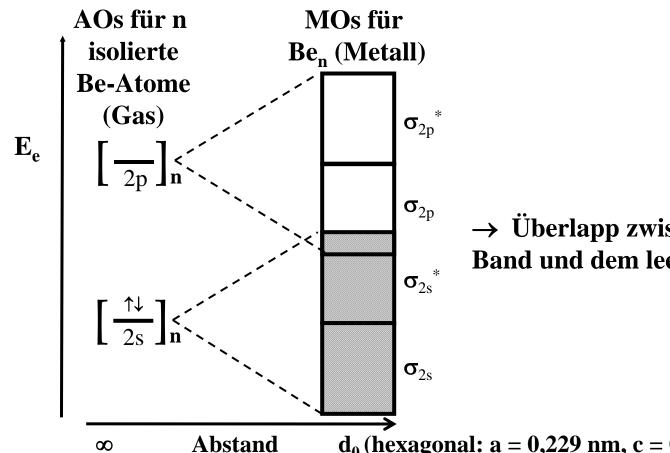
Lithium in der flüssigen und festen Phase


n Li Atome besitzen nun n 2s AOs und bilden n/2 bindende σ_{2s} und n/2 antibindende σ^*_{2s} MOs

Allgemeine Chemie Prof. Dr. T. Jüstel

Li(g)

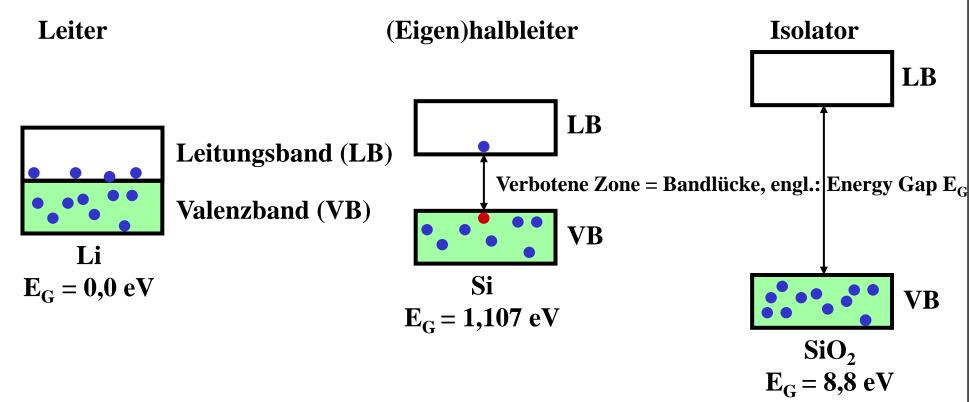
Folie 68


Energiebändermodell

Elektronen aus dem Valenzband lassen sich durch geringste Anregungsenergien in das Leitungsband überführen

- ⇒ Absorption und Emission aller Wellenlängen ohne Energieverlust ("schwarze Körper")
- ⇒ Breitbandige Reflexion (Spiegel) und metallischer Glanz (polierte Metalloberflächen)

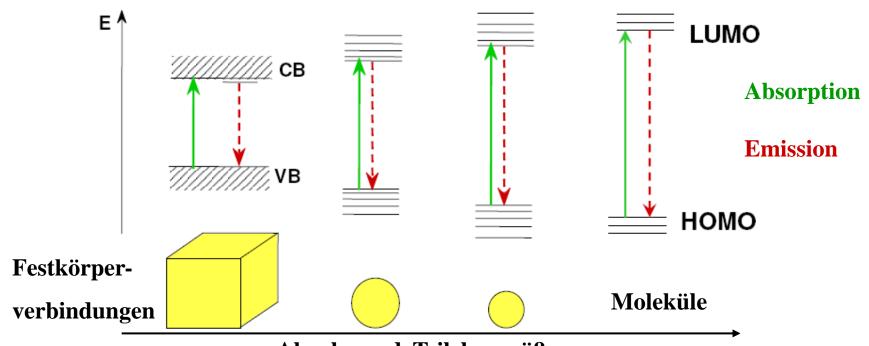
Energiebändermodell

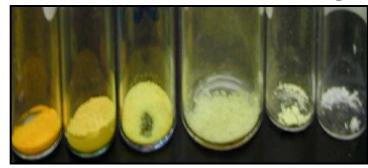

 \rightarrow Überlapp zwischen dem besetzten σ_{2s}^* Band und dem leeren σ_{2p} Band

 ∞ Abstand d₀ (hexagonal: a = 0,229 nm, c = 0,359 nm)

Elektronen aus dem voll besetzten σ_{2s}^* Band werden in das leere σ_{2p} Band überführt, wodurch Leitfähigkeit erzeugt wird.

11.5 Leiter, Eigenhalbleiter, Isolatoren


Die Ausprägung der metallischen Eigenschaften hängen vom Energieabstand des Valenzbandes zum Leitungsband ab


Bei Eigenhalbleitern wird elektrische Leitfähigkeit durch thermisch oder optisch induzierte Überführung von Valenzbandelektronen in das Leitungsband erreicht

11.5 Leiter, Eigenhalbleiter, Isolatoren

Energiebändermodell – Abhängigkeit von der Teilchengröße

AbnehmendeTeilchengröße

CdS-Nanopartikel: gelb \rightarrow weiß

11.5 Leiter, Eigenhalbleiter, Isolatoren

Die Größe der Bandlücke hängt von der chemischen Zusammensetzung, von der EN-Differenz und von dem Strukturtyp ab

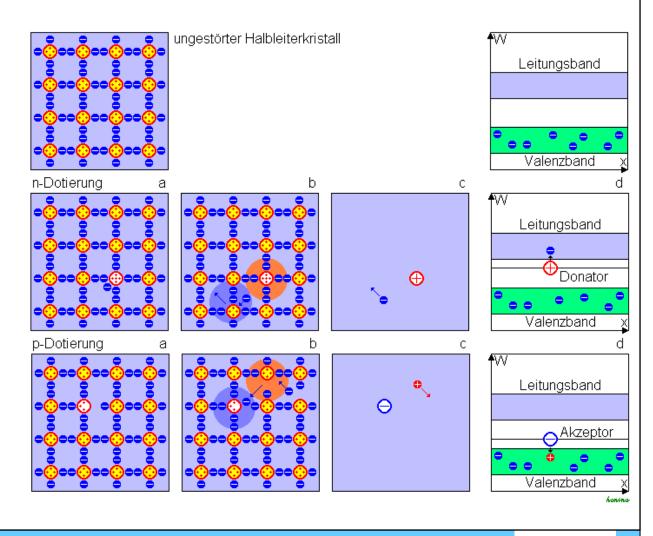
Substanz	Strukturtyp	Bandlücke E _G [eV]	EN-Differenz
MgF_2	Rutil	12,0	2,9
MgO	Kochsalz	7,8	2,3
C(sp³-hybridisiert)	Diamant	5,3	0,0
AlP	Zinkblende	3,0	0,6
Si (amorph)	-	1,7	0,0
Si (kristallin)	Diamant	1,1	0,0
ZnSe	Zinkblende	2,3	0,9
GaAs	Zinkblende	1,34	0,4
Ge	Diamant	0,72	0,0
InSb	Zinkblende	0,18	0,2
Graues Zinn	Diamant	0,08	0,0

Sn wird schon bei 13 °C metallisch \rightarrow Umwandlung von α -Sn (grau) in β -Sn (wei β)

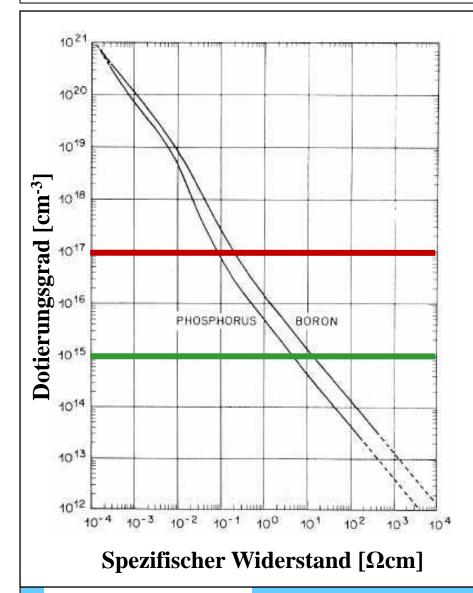
Allgemeine Chemie Prof. Dr. T. Jüstel Folie 73

11.5 Leiter, Eigenhalbleiter, Isolatoren

Die Leitfähigkeit von Eigenhalbleitern kann durch gezielte Dotierung erhöht werden


Dotierung meint hier den Einbau von Störstellen in den Kristall

Elemente mit abweichender elektronischer Struktur sorgen für


Elektronenleitung (→ **n-Dotierung**)

oder

Lochleitung (→ **p-Dotierung**)

11.5 Leiter, Eigenhalbleiter, Isolatoren

Beispiel Silizium

n-Dotierung (Elektronenleitung)

P, As, Sb (Donatoren)

p-Dotierung (Lochleitung)

B, Al, Ga, In (Akzeptoren)

Die elektrische Leitfähigkeit σ [S/m] ist der Kehrwert des spezifischen Widerstands.

Für Halbleiter: $\sigma = f(Dotierungsgrad)$

Si $4,35 \times 10^{-4} \text{ S/m}$

n-Si p-Si 1 ppm 9 x 10² S/m 5 x 10² S/m 1 ppb 6 x 10⁰ S/m 9 x 10⁻¹ S/m

Allgemeine Chemie Prof. Dr. T. Jüstel

11.6 Dotierte Halbleiter

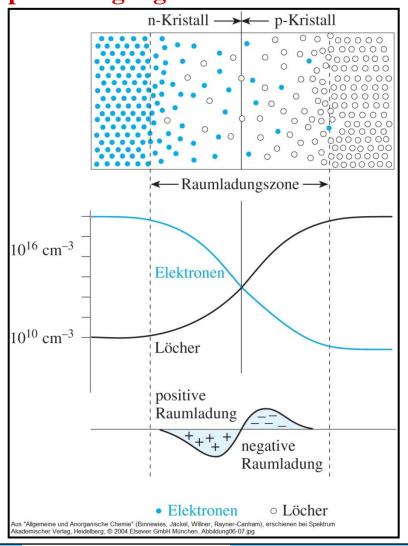
Floktrononiihorechuse

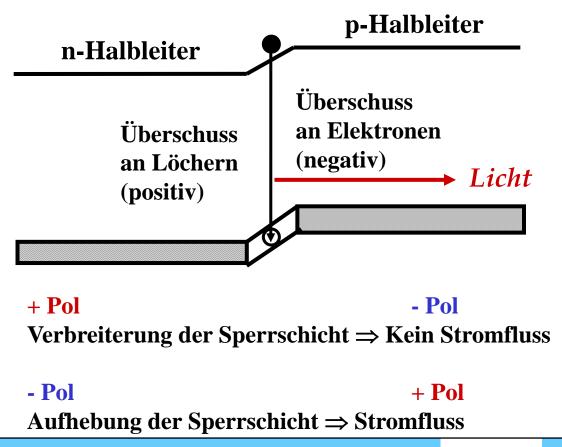
II-IIaibieitei	Elekti olieliubei schuss
P, As, Sb	5 Außenelektronen
Si	4 Außenelektronen

p-Halbleiter	Elektronenmangel
B, Al, Ga, In	3 Außenelektronen
Si	4 Außenelektronen

Anwendung in	<u> Halbleitermaterialien</u>
Dioden	Si
Leuchtdioden	AlN, GaN, InN,
	AlP, GaP, InP,
	AlAs, GaAs, InAs
Solarzellen	Si, GaAs, CuGaS ₂ , CuInS ₂
Transistoren	Si

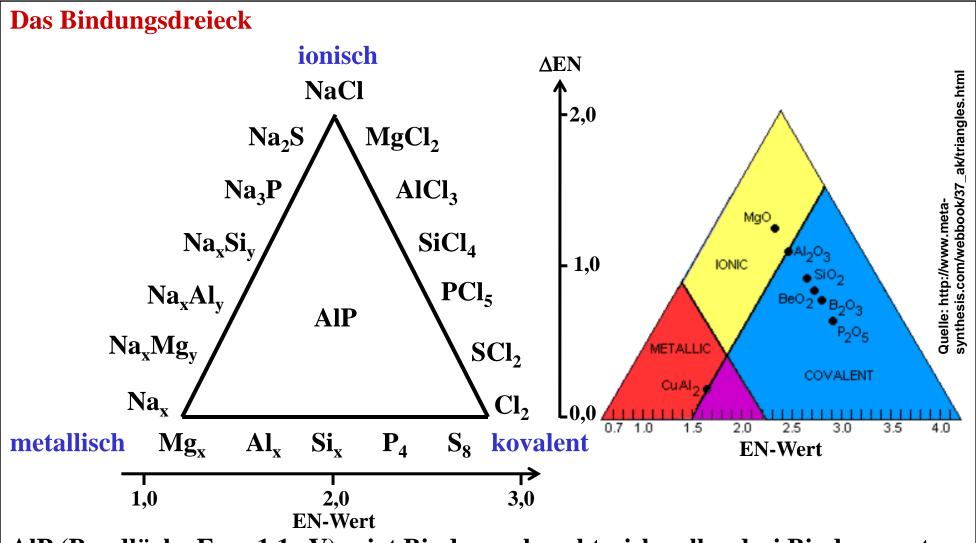
Si, Ge


	— Si — Si — Si — Si —	
		Elektronenpaar- bindung
a		Eigenhalbleiter
	$-\overset{\mid}{\operatorname{Si}} = \overset{\mid}{\operatorname{Si}} - \overset{\mid}{\operatorname{Si}} - \overset{\mid}{\operatorname{Si}} -$	
	$-\operatorname{Si}-\operatorname{Si}-\operatorname{Si}-\operatorname{Si}-$	— Donator-Atom
	$-\underbrace{\operatorname{Si}}_{1}-\underbrace{\operatorname{Si}}_{1}-\underbrace{\operatorname{As}}_{2}-\underbrace{\operatorname{Si}}_{1}-$	
	— Si — Si — Si —	
b	1 1 1 1	n-Halbleiter
	$-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-$	
	$-\operatorname{Si}$ $-\operatorname{In}$ Si $-\operatorname{Si}$ $-\operatorname{Si}$	Akzeptor-Atom
	$-\operatorname{si}_{i} - \operatorname{si}_{i} - \operatorname{si}_{i} \cdot \operatorname{si}_{i} -$	
	$-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-\overset{ }{\operatorname{Si}}-$	
	Igemeine und Anorganische Chemie" (Binnewies, Jackel, Williner, Rayner-Canham) nischer Verlag, Heidelberg, © 2004 Elsevier GmbH München. Abbildung06-06 pg	p-Halbleiter erschienen bei Spektrum


ICs

n_Halblaitar

11.6 Dotierte Halbleiter


p/n-Übergang = Grenze zwischen einem n- und einem p-dotierten Halbleiterkristall

Allgemeine Chemie Prof. Dr. T. Jüstel

11.7 Vergleich der Bindungsarten

AlP (Bandlücke $E_G = 1,1$ eV) zeigt Bindungscharakteriska aller drei Bindungsarten

Allgemeine Chemie Prof. Dr. T. Jüstel

11.7 Vergleich der Bindungsarten

Bindungstrends der Elemente der 2. und 3. Periode

Schmelzpunkte und Elementverbindungen für die Elemente der 2. und 3. Periode

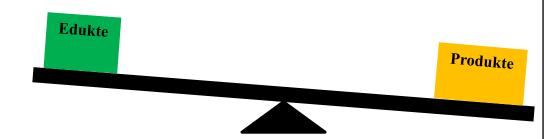
Li 181 °C	Be 1287 °C		C 3700 °C C ₆₀ , C ₇₀		O -219 °C O ₂	F -220 °C F ₂	Ne -249 °C
Na 98 °C	Mg 650 °C	Al 660 °C	Si 1420 °C	P 44 °C P ₄	S 115 °C S ₈	Cl -101 °C Cl ₂	Ar -189 °C

- Alle Halb- und Nichtmetalle bilden gerade so viele Bindungen aus, so dass ein Elektronenoktett erreicht wird
- Die Elemente der dritten Periode neigen nicht zur Bildung von Mehrfachbindungen, da der größere Atomradius die Überlappung der p-Orbitale und damit die Bildung von π -Bindungen erschwert
 - \Rightarrow Bildung oligomerer Moleküle wie P_4 oder S_8

11.7 Vergleich der Bindungsarten

Zusammenfassung

Der Bindungstyp, der in einer vorliegenden Verbindung dominiert, bestimmt wesentlich über ihre chemischen und physikalischen Eigenschaften


	Gerichtete Wechselwirkung	Ungerichtete Wechselwirkung
Elektronen lokalisiert	Atombindung $\Delta EN < 0,4$ $H_2, Cl_2, CH_4, BrCl, CCl_4$ Polare Atombindung $0,4 < \Delta EN < 1,7$ H_2O, NH_3, SO_3	Ionenbindung AEN > 1,7 NaCl, MgF ₂ , AlF ₃
Elektronen delokalisiert	./.	Metallbindung Alkali-, Erdalkali- und Erdmetalle Übergangsmetalle Seltenerdmetalle Legierungen

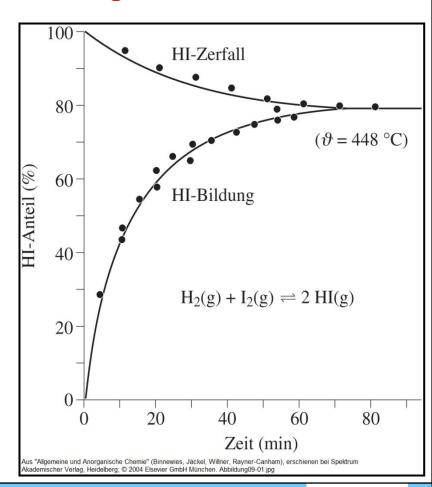
Allgemeine Chemie Prof. Dr. T. Jüstel

12. Das chemische Gleichgewicht

Gliederung

- 12.1 Vorbemerkungen
- 12.2 Das Massenwirkungsgesetz (MWG)
- 12.3 Prinzip von Le Chatelier
- 12.4 Löslichkeitsgleichgewichte
- 12.5 Homogene Gleichgewichte
- 12.6 Heterogene Gleichgewichte
- 12.7 Gekoppelte Gleichgewichte
- 12.8 MWG und chemische Energetik

Allgemeine Chemie Prof. Dr. T. Jüstel

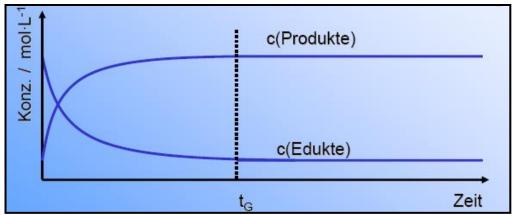

Folie 81

12.1 Vorbemerkungen

Der Begriff Gleichgewicht täuscht die absolute Stabilität von dynamischen Situationen vor! Der Gleichgewichtszustand ist kein Ruhezustand, sondern dynamisch, wobei nur makroskopisch keine Veränderungen festzustellen sind!

Beispiele

- Biologische Gleichgewichte:
 Regenwald (Wachstum ↔ Abbau)
- Physikalische Gleichgewichte:
 Treibhaus (Einstrahlung ↔ Abstrahlung)
 Sterne (Strahlungsdruck ↔ Gravitation)
- Chemische Gleichgewichte:
 Reversible Reaktionen, wie z. B.
 C(s) + CO₂(g) ≠ 2 CO(g)
 SO₂(g) + ½ O₂(g) ≠ SO₃(g)
 CaCO₃(s) ≠ CaO(s) + CO₂(g)
 H₂(g) + I₂(g) ≠ 2 HI(g)


12.1 Vorbemerkungen

Der Gleichgewichtszustand

- Die Konzentrationen aller beteiligten Substanzen bleiben konstant
- Hin- und Rückreaktion laufen gleichzeitig und mit gleichen Geschwindigkeiten v ab

Gleichgewichtsreaktion zwischen 2 Reaktionspartnern:

$$A_2 + B_2$$
 (Edukte) $\rightleftharpoons 2$ AB (Produkt)

$$\mathbf{v}_{\text{hin}} = \mathbf{k}_{\text{hin}} \cdot \mathbf{c}(\mathbf{Edukte})$$

$$v_{r\ddot{u}ck} = k_{r\ddot{u}ck} \cdot c(Produkte)$$

Im Gleichgewicht: $v_{hin} = v_{r\ddot{u}ck}$

Die Gleichgewichtseinstellung benötigt die Zeit \mathbf{t}_{G} und kann durch einen Katalysator beschleunigt werden

12.2 Das Massenwirkungsgesetz (MWG)

Quantitative Beschreibung von Gleichgewichtsreaktionen

Allgemeine Formulierung für die Reaktion: $\mathbf{a} \mathbf{A} + \mathbf{b} \mathbf{B} \rightleftharpoons \mathbf{c} \mathbf{C} + \mathbf{d} \mathbf{D}$

Gleichgewichtskonstante (Massenwirkungskonstante)

$$K_c = \frac{c^c(C) * c^d(D)}{c^a(A) * c^b(B)}$$

$$K_p = \begin{array}{c} \frac{p^c(C)*p^d(D)}{p^a(A)*p^b(B)} \end{array}$$

für Konzentrationen

für Partialdrücke

Beispiel: $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$ Bildung von Stickoxiden im Verbrennungsmotor (endotherme Reaktion: $\Delta H^{\circ} = +90 \text{ kJ/mol}$)

Das MWG lautet: $K_c(T) = c^2(NO)/(c^1(N_2)*c^1(O_2))$

 $K_c = (0.01)^2/(0.495)^2 = 0.41 \cdot 10^{-3}$ Bei 750 °C: 1 Vol-% NO < 1

 $K_c = (0.05)^2/(0.475)^2 = 11.1 \cdot 10^{-3}$ Bei 2700 °C: 5 Vol-% NO

12.2 Das Massenwirkungsgesetz (MWG)

Zusammenhang zwischen dem Reaktionsverlauf und K_c bzw. K_p

K >> 1: Die Reaktion läuft nahezu vollständig in Richtung der Produkte ab

$$2 \; H_2(g) + O_2(g) \; \rightleftharpoons \; 2 \; H_2O(g) \quad K_p = p^2(H_2O)/(p^2(H_2)*p(O_2)) = 10^{80} \; bar^{-1} \; (bei \; 25 \; ^{\circ}C)$$

K ~ 1: Alle Reaktionsteilnehmer in vergleichbar großen Konzentrationen

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$
 $K_p = p^2(HI)/(p(H_2)*p(I_2)) = 45,9 \text{ (bei 490 °C)}$

K << 1: Die Reaktion läuft praktisch nicht ab

$$N_2(g) + O_2(g) \rightleftharpoons 2 \text{ NO}(g)$$
 $K_p = p^2(NO)/(p(N_2)*p(O_2)) = 10^{-30} \text{ (bei 25 °C)}$

12.3 Prinzip von Le Chatelier

Übt man auf ein System, das im Gleichgewicht ist, durch Druck-, Temperatur- oder Konzentrationsänderungen einen Zwang aus, so verschiebt sich das Gleichgewicht, und zwar so, dass sich ein neues Gleichgewicht einstellt, bei dem dieser Zwang reduziert ist.

Beeinflussung der Gleichgewichtslage chemischer Reaktion durch

- 1. Änderung der Konzentrationen bzw. der Partialdrücke
- 2. Temperaturänderungen
- 3. Druckänderungen (bei Reaktionen mit einer Stoffmengenänderungen der gasförmigen Komponenten)

Beispiel

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 $\Delta H^{\circ} = -92 \text{ kJ/mol}$, Reduktion des Gasvolumens

Allgemeine Chemie Prof. Dr. T. Jüstel

12.4 Löslichkeitsgleichgewichte

Zur Beschreibung der Lage des Löslichkeitsgleichgewichts von Salzen wird das Löslichkeitsprodukt verwendet.

$$A_m B_n(s) \rightleftharpoons m A^+(aq) + n B^-(aq)$$

$$K = \frac{c^m(A^+) \cdot c^n(B^-)}{c(A_m B_n)}$$

Da die Konzentration von $A_m B_n$ bei konstanter Temperatur konstant ist, kann man die Gleichung auch mit $c(A_m B_n)$ multiplizieren \Rightarrow Löslichkeitsprodukt

$$\mathbf{d.h.} \ \mathbf{K_L} = \mathbf{K} \cdot \mathbf{c}(\mathbf{A_n} \mathbf{B_m})$$

$$K_L = c^m(A^+) \cdot c^n(B^-)$$

Bsp.:
$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_L = c(Ag^+) \cdot c(Cl^-) = 2,0 \cdot 10^{-10} \text{ mol}^2/l^2$$

$$pK_L = 9.7 (p = -log_{10})$$

Konzentration an Ag⁺-Ionen: $c(Ag^+) = \sqrt{K_L} = 1,4\cdot10^{-5}$ mol/l, da $c(Ag^+) = c(Cl^-)$

12.4 Löslichkeitsgleichgewichte

Löslichkeitsprodukte schwerlöslicher Salze

Salz	pK _L -Wert (auf Aktivitäten bezogen			
PbCl ₂	4,8			
Hg_2Cl_2	17,9	HCl-Gruppe		
AgCl	9,7			
PbS	27,5			
HgS	52,7	H ₂ S-Gruppe		
CuS	36,1			
NiS	19,4			
MnS	10,5	(NH ₄) ₂ S-Gruppe		
FeS	18,1	· 4/2		
BaCO ₃	8,3			
SrCO ₃	9,0	(NH ₄) ₂ CO ₃ -Gruppe		
CaCO ₃	8,4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

Exp. Untersuchungen zur Löslichkeit von Salzen zeigen, dass die Löslichkeit von der Konzentration des Salzes und von der von Fremdsalzen abhängen

> Aktivität: a = γ·c (wirksame Konzentration)

Stark verdünnte Lösungen $\gamma \approx 1,0$ d.h. a = c Konzentrierte Lösungen $\gamma = 0,0 \dots 1,0$ d.h. a < c

Die Größe des Aktivitätskoeffizienten hängt von der Ionenstärke, der Ionenladung und dem Ionenradius ab

12.5 Homogene Gleichgewichte

Man spricht von homogenen Gleichgewichten, wenn alle Reaktionspartner in der gleichen Phase vorliegen (Lösung oder Gasphase)

Im Festkörper

$$La_2O_3(s) + MoO_3(s) \rightleftharpoons La_2MoO_6(s)$$

$K_c = \frac{c(La_2MoO_6)}{c(La_2O_3)c(MoO_3)}$

In Lösungen

$$HAc(l) \rightleftharpoons H^{+}(aq) + Ac^{-}(aq)$$
 $Ac = Acetat (CH_{3}COO^{-})$

$$K_c = \frac{c(H^+) \cdot c(Ac^-)}{c(HAc)}$$

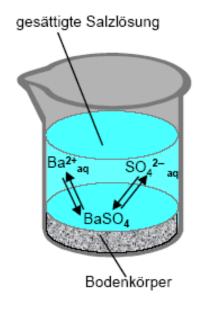
In der Gasphase

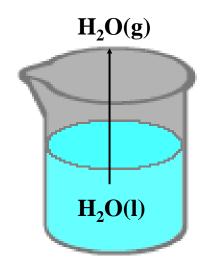
$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

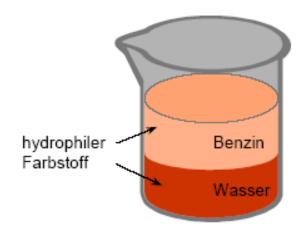
$$pV = nRT \implies p = cRT \implies c = p/RT$$
 einsetzen ergibt

Allgemeiner Zusammenhang zwischen K_p und K_c

(\(\Delta v \) ist die Differenz der Teilchenzahl zwischen Produkt- und Eduktseite)


$$K_c = \frac{c^2(SO_3)}{c^2(SO_2) \cdot c(O_2)}$$


$$K_p = \frac{p^2(SO_3)}{p^2(SO_2) \cdot p(O_2)} RT$$


$$K_p = K_c \frac{1}{(R \cdot T)^{\Delta \nu}}$$

12.6 Heterogene Gleichgewichte

Man spricht von heterogenen Gleichgewichten, wenn die Reaktionspartner in verschiedenen Phasen (s, l, g, p) vorliegen

Löslichkeitsgleichgewichte $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$

 $\mathbf{K}_{\mathbf{L}} = \mathbf{K} \cdot \mathbf{c}(\mathbf{BaSO_4}) = \mathbf{c}(\mathbf{Ba^{2+}}) \cdot \mathbf{c}(\mathbf{SO_4}^{2-})$

Phasengleichgewichte $H_2O(1) \rightleftharpoons H_2O(g)$

 $\mathbf{K}_{\mathbf{p}} = \mathbf{p}(\mathbf{H}_{2}\mathbf{O})$

Verteilungsgleichgewichte $F(aq) \rightleftharpoons F(Benzin)$

 $K = c(F_{Benzin})/c(F_{aq})$ (Nernst'scher Verteilungssatz)

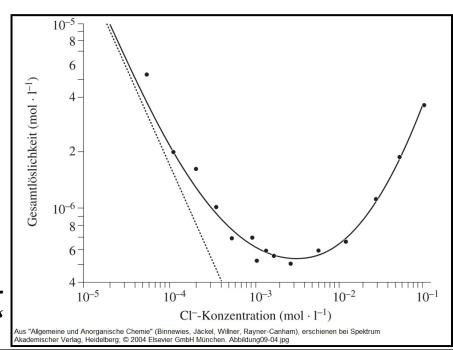
12.7 Gekoppelte Gleichgewichte

Chemische Reaktionen werden häufig von Neben- oder Folgereaktionen begleitet

Beispiel: Fällung von AgCl durch Zusatz von NaCl zu einer AgNO₃-Lösung

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_L = c(Ag^+) \cdot c(Cl^-) = 2,0.10^{-10} \text{ mol}^2/l^2$$


$$Ag^{+}(aq) + 2 Cl^{-}(aq) \rightleftharpoons [AgCl_{2}]^{-}(aq)$$

$$K = \frac{c([AgCl_2]^-)}{c(Ag^+) \cdot c^2(Cl^-)} = 1.6 \cdot 10^{-5} l^2 / \text{mol}^2$$

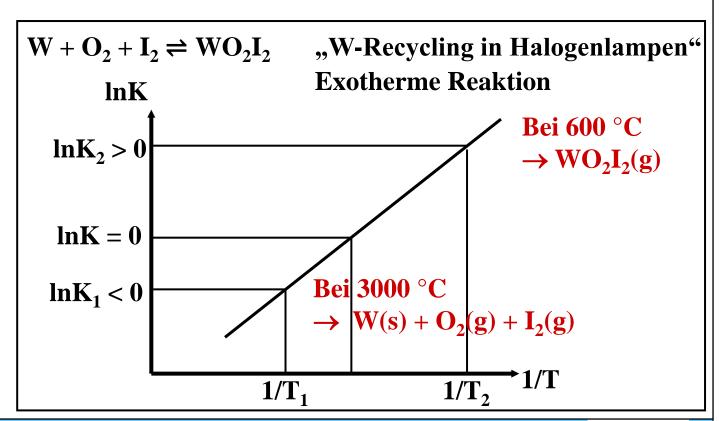
Bei höheren Konzentrationen überwiegt die Bildung des Chlorokomplexes:

$$AgCl(s) + Cl(aq) \rightleftharpoons [AgCl_2](aq)$$

$$K_{C} = \frac{c([AgCl_{2}]^{-})}{c(Cl^{-})} = K_{L} \cdot K \text{ "Produkt der Gleich-gewichtskonstanten"}$$

12.8 MWG und chemische Energetik

Die Lage von Gleichgewichten lässt sich aus den thermodynamischen Größen Enthalpie H und Entropie S ableiten


Freie Standardreaktionsenthalpie: $\Delta G^0 = \Delta H^0 - T\Delta S^0$

 $lnK = -\Delta G^0/RT$

Einsetzen ergibt die van't Hoff Gleichung:

$$lnK = -\frac{\Delta H^0}{R \cdot T} + \frac{\Delta S^0}{R}$$

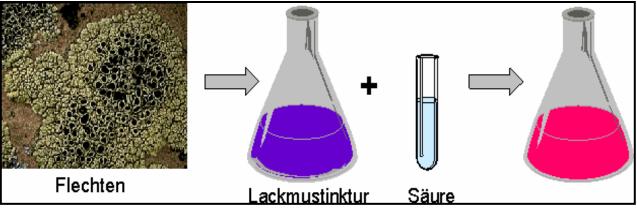
Die Lage des Gleichgewichtes bzw. K ist also temperaturabhängig

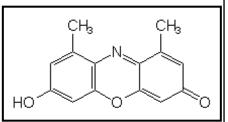
13. Säuren und Basen

Gliederung

- 13.1 Historisches
- 13.2 Definitionen
- 13.3 Stärke von Säuren und Basen
- 13.4 Exkurs: Supersäuren
- 13.5 Säure-Base Titrationen
- 13.6 Puffer
- 13.7 Isoelektrischer Punkt
- 13.8 Elektrophoretische Abscheidung
- 13.9 Zusammenfassung

13.1 Historisches


Säuren


- haben sauren Geschmack
 - Zitronensäure, Essigsäure
 - Salzsäure, Phosphorsäure
- lösen unedle Metalle unter Wasserstoffentwicklung
- Färben Pflanzenfarbstoffe rot (Rotkohl, Lackmus)
 - → Säurebegriff (Robert Boyle 1663)

Basen

- schmecken bitter bis seifig
- geben basische bzw. alkalische Lösungen (Laugen)
- lösen einige organische Stoffe durch Verseifung
- reagieren mit Säuren unter Bildung von Salzen und Wasser

Rocella Tinctoria

Orcein

13.2 Definitionen - Arrhenius (1884)

Saure Eigenschaften werden durch H⁺-Ionen, basische durch OH⁻-Ionen verursacht

Säuren bilden durch Dissoziation in wässriger Lösung H⁺-Ionen:

- $HCl \rightarrow H^+ + Cl^-$
- $H_2SO_4 \rightarrow 2 H^+ + SO_4^{2-}$

Basen bilden durch Dissoziation in wässriger Lösung OH⁻-Ionen:

- NaOH \rightarrow Na⁺ + OH⁻
- $Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^{-}$

Neutralisation: $H^+ + OH^- \rightarrow H_2O$

 $\Delta H = -57.4 \text{ kJ/mol}$

 $HCl + NaOH \rightarrow H_2O + NaCl$

Problem

Nach dieser Definition ist Ammoniak NH₃ keine Base, obwohl es basisch reagiert:

• $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

13.2 Definitionen - Brønsted und Lowry (1923)

Säure/Base-Reaktionen sind Protonenübertragungsreaktionen (in Wasser)

Säuren sind Stoffe, die Protonen an einen Reaktionspartner abgeben:

$$HCl + H_2O \rightleftharpoons H_3O^+ + Cl^-$$

Basen sind Stoffe, die Protonen von einem Reaktionspartner aufnehmen:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

Konjugiertes Säure-Base-Paar: Säure
$$\rightleftharpoons$$
 Base + Proton HCl \rightleftharpoons Cl⁻ + H⁺ H₂O + H⁺ NH₄ + \rightleftharpoons NH₃ + H⁺ H₂O \rightleftharpoons OH⁻ + H⁺

- An Protonenübertragungsreaktionen sind immer 2 Säure-Base-Paare beteiligt
- H₂O reagiert je nach Reaktionspartner als Säure oder Base (Ampholyt)
- Die Zuordnung eines Stoffes als Säure oder Base hängt vom Reaktionspartner ab

13.2 Definitionen - Brønsted und Lowry (1923)

Der Lowry/Brønsted Säure-Basen-Begriff umfasst auch Reaktionen ohne Lösungsmittel (Gasphase) und in anderen protischen Lösungsmitteln

In der Gasphase:

$$HCl + NH_3 \rightarrow NH_4^+Cl^-$$

In flüssigem Ammoniak als Lösungsmittel:

$$NH_4Cl + NaNH_2 \rightarrow 2NH_3 + NaCl$$

$$NH_4^+ + NH_2^- \rightarrow 2NH_3$$

(Säure) (Base) (Neutralisationsprodukt)

In protischen Lösungsmitteln mit Eigendissoziation (Autoprotolyse)

$$2 \text{ H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^- \quad \text{bzw.} \quad 2 \text{ HS} \rightleftharpoons \text{H}_2\text{S}^+ + \text{S}^-$$

S = Solvens

wirken

Stoffe, welche die Kationenkonzentration des Solvens erhöhen, als Säure Stoffe, welche die Anionenkonzentration des Solvens erhöhen, als Base

13.2 Definitionen - Lösungsmittelsysteme

Säuren und Basen in Lösungsmittelsystemen mit Eigendissoziation (Autoprotolyse)

Solvens ⇌	Säure-Ion +	Base-Ion	Säure	Base
$\overline{\mathbf{H_2O}}$	H_3O^+	OH-	HCl	NaOH
NH ₃	NH_4^+	$\mathrm{NH_2}^-$	NH ₄ Cl	$NaNH_2$
CH ₃ COOH	$CH_3COOH_2^+$	CH ₃ COO-	HCl	CH ₃ COONa
SO_2	SO^{2+}	SO_3^{2}	$SOCl_2$	Na_2SO_3

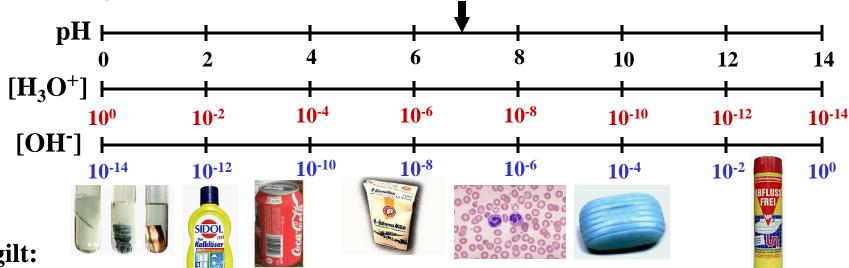
Die Autoprotolysekonstante K_{HS} beschreibt den Grad der Eigendissoziation:

$$K_{HS} = [H_2S^+]*[S^-]$$

$$K_{H_2O} = [H_3O^+]*[OH^-] = 10^{-14} \text{ mol}^2/l^2 = K_w = \text{Ionenprodukt von Wasser bei 25 °C}$$
 $K_{NH_3} = [NH_4^+]*[NH_2^-] = 10^{-29} \text{ mol}^2/l^2$

Am Neutralpunkt gilt: $[H_2S^+] = [S^-] \implies K_{HS} = [H_2S^+]^2 \implies [H_2S^+] = \sqrt{K_{HS}}$

Allgemeine Chemie Prof. Dr. T. Jüstel


13.2 Definitionen - Der pH-Wert

Der pH-Wert ist der neg. dekadische Logarithmus der H₃O⁺-Ionen Konzentration

$$pH = -log[H_3O^+]$$

pH = frz.: puissance d'hydrogène (S.P.L. Sørensen 1909)

Neutralpunkt: $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol/l} \Rightarrow pH = 7$

Analog gilt:

$$pOH = -log[OH^{-}]$$

In wässrigen Lösungen ist das Produkt der Konzentration der H_3O^+ und OH^- -Ionen konstant: pH + pOH = 14

13.2 Definitionen - Lewis (1938)

Bei Säure-Basen Reaktionen werden Elektronenpaare übertragen

Säuren sind Elektronenpaar-Akzeptoren (Elektrophile):

$$BF_3$$
, SiF_4 , SO_2 , SO_3 , Mg^{2+} , Al^{3+} , H^+ \Rightarrow Elektronenmangelverbindungen

Basen sind Elektronenpaar-Donatoren (Nukleophile):

$$NH_3$$
, PH_3 , CO , N_2 , NO , F^- , CN^- , $OH^ \Rightarrow$ freie Elektronenpaare

Reaktionsbeispiele: Säure + Base Neutralisationsprodukt

13.3 Stärke von Säuren und Basen

Nach Brønsted/Lowry ist die Stärke einer Säure bzw. Base abhängig von ihrem Dissoziationsgrad in einem Lösungsmittel (Wasser)

Reaktion einer Säure mit Wasser

 $HA + H_2O \rightleftharpoons A^- + H_3O^+$

Reaktion einer Base mit Wasser

 $B + H_2O \rightleftharpoons HB^+ + OH^-$

Die Gleichgewichtsquotienten ergeben sich gemäß dem Massenwirkungsgesetz zu

[HB+]*[OH-]

$$K*[H_2O] = Ks =$$
 [HA]

$$\mathbf{K}^*[\mathbf{H}_2\mathbf{O}] = \mathbf{K}_{\mathbf{B}} = \boxed{\mathbf{B}}$$

$$pK_S = -log K_s$$

$$pK_B = - log K_B$$

$$K_B = Basenkonstante$$

In Wasser ist die stärkste Säure das H₃O+-Ion, die stärkste Base das OH--Ion

13.3 Stärke von Säuren und Basen

Brønsted Säuren und Basen lassen sich in einer protochemischen Reihe anordnen

Base	+ H +	pKs-Wert	Name	
ClO ₄ -	$+ H^+$	-10	Perchlorsäure	
Cl-	$+ H^+$	-7	Chlorwasserstoff	
HSO ₄ ⁻	$+ H^+$	-3	Schwefelsäure	
NO_3^-	$+ H^+$	-1.4	Salpetersäure	
H_2O	$+ H^+$	0	Hydronium-Ion	
$\mathrm{H_2PO_4}^-$	$+ \mathbf{H}^+$	2.2	Phosphorsäure	
CH ₃ COO-	$+ H^+$	4,75	Essigsäure)
HS ⁻	$+ H^+$	7,2	Schwefelwasserstoff	
NH_3	$+ H^+$	9,25	Ammonium-Ion	
OH-	$+ H^+$	14	Wasser	
	ClO ₄ - Cl- HSO ₄ - NO ₃ - NO ₃ - H ₂ O H ₂ PO ₄ - CH ₃ COO- HS- NH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Dissoziationsgrad einer Säure in Wasser:

Dissoziation =
$$\frac{100}{1 + 10^{(pks-pH)}} [\%]$$

Säurestärke

Allgemeine Chemie Prof. Dr. T. Jüstel

13.3 Stärke von Säuren und Basen

Die Stärke von Säuren und Basen wird von der Polarität kovalenter Element-H Bindungen, sterischen Effekten und der Solvatisierung bestimmt

Polarität der Element-H Bindung (O-H Bindung)

$$HClO_4 > H_2SO_4 > H_3PO_4 > H_3BO_3$$

Elektronegativität des Zentralatoms

HOClO₃ > HOClO₂ > HOClO > HOCl Anzahl der Sauerstoffatome (Oxosäuren)

Sterische Effekte (Lewis Säure-Basen Reaktionen)

Allgemeine Chemie Prof. Dr. T. Jüstel **Folie 103**

13.3 Stärke von Säuren und Basen - Indikatoren

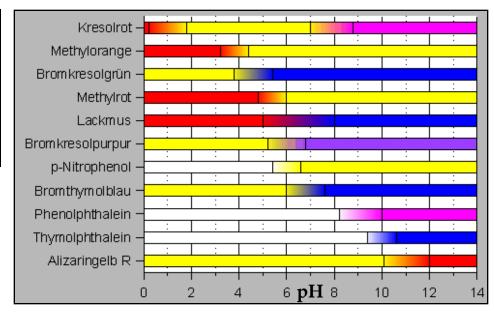
(Säure-Basen-)Indikatoren sind schwache organische Säuren oder Basen, deren Lösungen bei Änderung des pH-Wertes ihre Farbe wechseln

$$HInd + H_2O \rightleftharpoons H_3O^+ + Ind^-$$

$$pH = pK_{Ind} - log [Ind^{-}]$$

$$O_2N$$
 O_1 O_2N O

absorbiert UV


absorbiert blau

Mischindikatoren

Lackmus, Universalindikator, Rotkohl

$$K_{Ind} = \frac{[H_3O^+][Ind^-]}{[Hind]}$$

Umschlagsbereich: $pH = pK_{Ind} \pm 1$

13.4 Exkurs: Supersäuren

Supersäuren sind Zusammensetzungen, die saurer als 100%-ige Schwefelsäure sind

Reine Schwefelsäure zeigt Autoprotolyse

$$2 \text{ H}_2\text{SO}_4 \rightleftharpoons \text{ H}_3\text{SO}_4^+ + \text{HSO}_4^- \text{ } (\text{K}_{\text{H}_2\text{SO}_4} = 10^{-4})$$

Indikatorbase, z.B. p-Nitroanilin

Supersäuren erhöhen die Konzentration

der H₃SO₄+-Kationen:

$$H_2S_2O_7 + H_2SO_4 \rightleftharpoons HS_2O_7^- + H_3SO_4^+$$

$$HSO_3F + H_2SO_4 \rightleftharpoons SO_3F^- + H_3SO_4^+$$

SbF₅ erhöht die Stärke von HSO₃F weiter

Messung durch Hammett (1930)

Verwendung schwacher

Indikatorbasen zur Bestimmung

$$\mathbf{H_0} = \mathbf{pK_{S,Ind}} - \log [\mathbf{Ind}^-]$$

$$1 \text{ M H}_2 \text{SO}_4 \qquad \text{H}_0 = -2.5$$

$$H_2SO_4$$
 $H_0 = -12$

$$H_2S_2O_7$$
 $H_0 = -15$

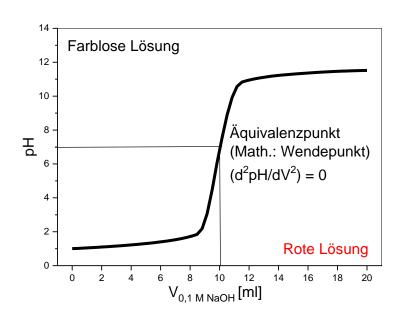
$$HSO_3F$$
 $H_0 = -15$

$$HSO_3F/SbF_5$$
 $H_0 = -21,5$

 \rightarrow Eine Mischung aus SbF₅ und HSO₃F ist 10^{10} mal saurer als reine Schwefelsäure!

13.5 Säure-Base Titrationen

Säure-Base Titrationen werden eingesetzt, um die Konzentration einer Säure oder einer Base in wässriger Lösung zu bestimmen


Titration einer starken Säure (HCl) mit einer starken Base (NaOH)

Analyt: 10 ml 0,1 M HCl

Titrant: x ml 0,1 M NaOH wird zugefügt

 $HCl + NaOH \rightarrow H_2O + NaCl$

d.h. der Äquivalenzpunkt wird erreicht, sobald 10 ml 0,1 M NaOH zugefügt worden sind

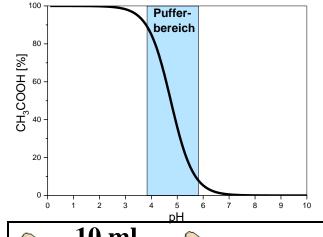
- Visualisierung des Äquivalenzpunktes wird durch Zusatz eines Indikators erreicht, z.B. durch Phenolphthalein
- Für starke Säure und Basen gilt: Äquivalentpunkt liegt bei pH = 7.0

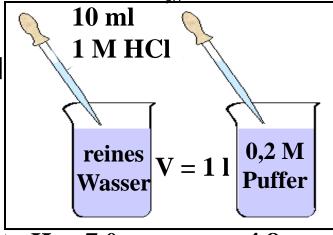
13.6 Puffer

Puffer sind Lösungen, deren pH-Wert sich beim Zusatz einer Säure oder Base

kaum ändert

Puffer sind Mischungen einer


- schwachen Säure und ihrem Salz
- schwachen Base und ihrem Salz


z.B.
$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

$$\mathbf{K}_{S} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}^{-}]}{[\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H}]} \quad \mathbf{p}\mathbf{H} = \mathbf{p}\mathbf{K}_{S} + \log \frac{[\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}^{-}]}{[\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H}]}$$

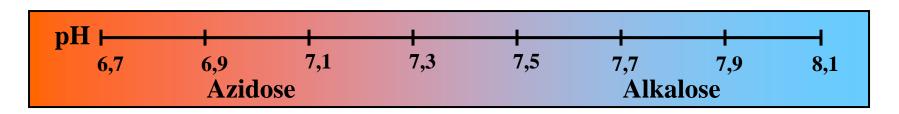
$$pH = pK_S + log \frac{[A^-]}{[HA]}$$

Henderson-Hasselbalch-Gleichung

Start pH 7,0

End pH 2,0

4,8


4,71

13.6 Puffer - Blut

Ein konstanter Blut pH-Wert wird durch mehrere Puffersysteme erreicht

pH von Blutplasma (Mensch)

$$pH = 7.4 \pm 0.03$$

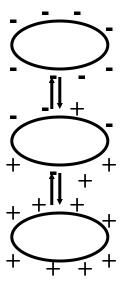
Puffersystem	<u>pK</u> _S	Name	<u>Pufferkapazität</u>
$H_2CO_3 + H_2O \rightleftharpoons H_3O^+ + HCO_3^-$	6,1	Karbonat	75%
$HbH^+ + H_2O \rightleftharpoons H_3O^+ + Hb$	8,25	Hämoglobin	24%
$H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$	6,8	Phosphat	1%

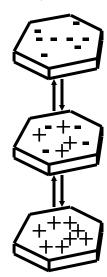
Allgemeine Chemie Prof. Dr. T. Jüstel

13.7 Isoelektrischer Punkt

Der isoelektrische Punkt IEP ist der pH-Wert, bei dem die durchschnittliche elektr. Ladung einer polyprotischen Säure null ist

Aminosäure


Proteine (Nanopartikel)


Pulver (Mikropartikel)

$$-OOC-CH_2-NH_2$$
 $\parallel + H^+ \quad pK_1$

$$\begin{array}{ccc}
-OOC-CH_2-NH_3^+ \\
 & \downarrow \downarrow + H^+ & pK_2
\end{array}$$

IEP bei
$$pH = (pK_1 + pK_2)/2$$

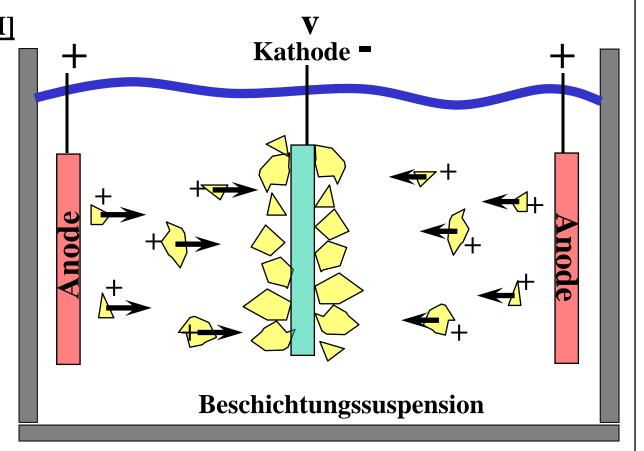
Teilchen mit neutraler Oberfläche ⇒ "Point of Zero Charge (PZC)"

Anwendung in

- Analytischer Chemie
- Beschichtungstechnologie

Elektrophorese, Aminosäureanalyse

Elektrophoretische Abscheidung von Partikeln


13.8 Elektrophoretische Abscheidung

Die Oberflächenladung eines Partikels in Supsension wird durch den eingestellten pH-Wert bestimmt (oder durch Zusatz eines Elektrolyten, z.B. Dodecylsulfat)

Verbindung	PZC bei [pH
SiO ₂	2,5
$\overline{\text{TiO}_{2}}$	4,5
Al_2O_3	9,0
Y_2O_3	9,1
Yb_2O_3	9,7
La_2O_3	10,4
MgO	12,0

Beispiel

Die Oberfläche von Al_2O_3 -Partikeln ist bei pH < 9,0 positiv aufgeladen

13.9 Zusammenfassung

Fundamentelle Gemeinsamkeit aller Säure-Base Definitionen

- Eine Säure ist eine Verbindung die eine positiv geladene Spezies abspaltet oder eine negativ geladene Spezies aufnimmt
- Eine Base ist eine Verbindung die eine negativ geladene Spezies abspaltet oder eine positiv geladene Spezies aufnimmt

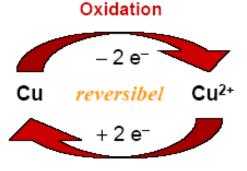
Allgemeinste Definition

- Azidität ist der positive Charakter einer chemischen Spezies, welcher durch eine Reaktion mit einer Base erniedrigt wird
- Basizität ist der negative Charakter einer chemischen Spezies, welcher durch eine Reaktion mit einer Säure erniedrigt wird

Stärke von Säuren und Basen

• Die Stärke hängt von der Ladungsdichte ab (Ladung pro Volumen)

• Stärkste Säure Proton H⁺ (nicht elementar, Größe ~ 10⁻¹⁵ m)


• Stärkste Base: Elektron e (elementar, Größe < 10⁻¹⁹ m)

14. Redoxvorgänge

Gliederung

- 14.1 Oxidationszahlen
- 14.2 Oxidation und Reduktion
- 14.3 Aufstellen von Redoxgleichungen
- **14.4 Galvanische Elemente**
- 14.5 Berechnung von Redoxpotentialen
- 14.6 Standardwasserstoffelektrode
- 14.7 Elektrochemische Spannungsreihe
- 14.8 Elektrolyse
- 14.9 Galvanische Spannungsquellen
- 14.10 Korrosion- und Korrosionsschutz

Reduktion

14.1 Oxidationszahlen

Allgemeine Regeln zur Bestimmung der Oxidationszahlen

1. Elemente

Die Oxidationszahl eines Atoms im elementaren Zustand ist null

2. Ionenverbindungen

Die Oxidationszahlen sind mit der Ionenladung identisch

Verbindung	Ionen	Oxidationszahlen
------------	-------	------------------

NaCl Na ⁺ , Cl ⁻	Na ^{+I} Cl ⁻
--	----------------------------------

$$Fe_3O_4$$
 Fe^{2+} 2 Fe^{3+} , 4 O^{2-} $Fe^{+II/+III}$ O^{-II}

3. Kovalente Verbindungen

Die Oxidationsstufen der Atome werden durch Heterolyse ermittelt

Verbindung	Lewisformel	fiktive Ionen	Oxidatio	nszahlen
HCl	H-Cl	H ⁺ , Cl ⁻	$\mathbf{H}^{+\mathbf{I}}$	Cl-I
H ₂ O	Н-О-Н	$2 H^+, O^{2-}$	$\mathbf{H}^{+\mathbf{I}}$	O-II
CO_2	O=C=O	C^{4+} , 2 O^{2-}	C^{+IV}	O-II

14.2 Oxidation und Reduktion

Oxidation = Elektronenabgabe, d.h. Erhöhung der Oxidationszahl

$$A^{m+} \rightarrow A^{(m+z)+} + z e^{-}$$

$$Fe^0 \rightarrow Fe^{+III} + 3e^{-}$$

"Rosten von Eisen"

Reduktion = Elektronenaufnahme, d.h. Erniedrigung der Oxidationszahl

$$A^{m+} + z e^- \rightarrow A^{(m-z)+}$$

$$Ag^{+I} + e^- \rightarrow Ag^0$$

"Silberspiegelreaktion"

Disproportionierung

$$2 A^{m+} \rightarrow A^{(m-z)+} + A^{(m+z)+}$$

$$2 \text{ Cu}^{+\text{I}} \rightarrow \text{ Cu}^{+\text{II}} + \text{Cu}^{0}$$

⇒ Instabilität von Cu⁺

Komproportionierung

$$A^{(m-z)+} + A^{(m+z)+} \rightarrow 2 A^{m+}$$

$$2 \operatorname{Mn^{+VII}O_4^-} + 3 \operatorname{Mn^{+II}} + 4 \operatorname{OH^-} \rightarrow 5 \operatorname{Mn^{IV}O_2} + 2 \operatorname{H_2O}$$

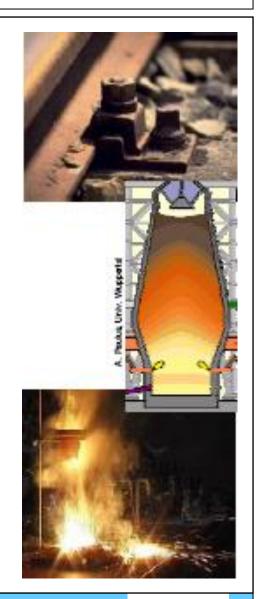
⇒ Braunsteinbildung

14.2 Oxidation und Reduktion

Redoxreaktionen sind reversibel

Oxidation von Eisen zu Fe₂O₃

 $4 \text{ Fe}^{0} + 3 \text{ O}_{2} \rightarrow 2 \text{ Fe}^{\text{III}}_{2} \text{O}_{3} \text{ (Rost, Rot-Pigment)}$


Reduktion von Fe₂O₃ zu Eisen

a) Hochofen-Prozess

$$2 \operatorname{Fe^{III}}_{2} O_{3} + 3 \operatorname{C^{II}O} \rightarrow 2 \operatorname{Fe^{0}} + 3 \operatorname{C^{IV}O_{2}}$$

b) Thermit-Reaktion (Schweißen von Schienen)

$$2 \operatorname{Fe^{III}}_{2}O_{3} + 2 \operatorname{Al^{0}} \rightarrow 2 \operatorname{Fe^{0}} + \operatorname{Al^{III}}_{2}O_{3}$$

14.2 Oxidation und Reduktion

Exkurs: Höllenstein (AgNO₃)

 Ag^+ (Ag^INO_3 , $Ag_2^ISO_4$) ist ein starkes Oxidationsmittel und kann daher organische Materie oxidieren, wobei es selbst zu Ag^0 reduziert wird \rightarrow schwarze Flecken

Verwendung

- Entfernung von Warzen
- Desinfektion: Kühlschränke
- Entfernung wuchernden Gewebes

14.3 Aufstellen von Redoxgleichungen

An einer Redoxreaktion sind immer zwei Redoxsysteme beteiligt

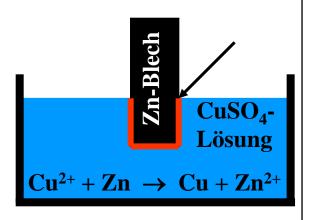
⇒ Getrennte Formulierung der beiden Redoxsysteme

Allgemeines Vorgehen

- 1. Aufstellen der Reaktionsgleichungen der beiden Redoxsysteme
- 2. Elektronenausgleich durch Finden des KGV
- 3. Ladungsausgleich, d.h. Herstellen der Elektroneutralität
- 4. Stoffbilanz, d.h. gleiche Anzahl der Atome jeder Atomsorte auf beiden Seiten der Redoxgleichung

Beispiel:
$$Cu + H_3O^+ + NO_3^- \rightleftharpoons Cu^{2+} + NO$$

Redoxsystem 1:
$$Cu^0 \rightleftharpoons Cu^{+II} + 2 e^ \Rightarrow$$
 da das $KGV = 6$ ist Redoxsystem 2: $N^{+V}O_3^- + 3 e^- \rightleftharpoons N^{+II}O$ $x = 2$


Redoxgleichung:
$$3 \text{ Cu} + 8 \text{ H}_3\text{O}^+ + 2 \text{ NO}_3^- \rightleftharpoons 3 \text{ Cu}^{2+} + 2 \text{ NO} + 12 \text{ H}_2\text{O}$$

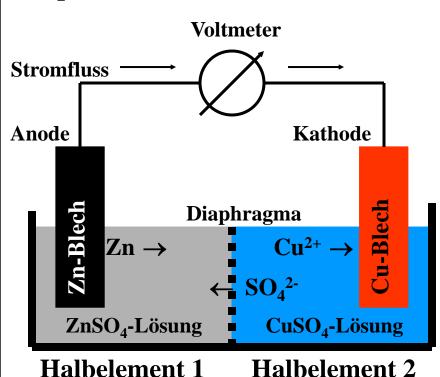
14.4 Galvanische Elemente

Die Funktionsweise galvanischer Elemente beruht auf der unterschiedlichen Neigung chemischer Spezies Elektronen aufzunehmen bzw. abzugeben

	Reduzierte Fo	Oxidierte Form		
当 ↑	Na	_	Na^+	+ e-
nz 2	Zn	\rightleftharpoons	$\mathbf{Z}\mathbf{n}^{2+}$	+ 2 e ⁻
e Tendenz enabgabe	Fe	=	Fe^{2+}	+ 2 e ⁻
lenca abg	$H_2 + 2 H_2O$	=	2 H ₃ O ⁺	+ 2 e
	Cu	=	Cu^{2+}	+ 2 e ⁻
Steigende Elektrone	2 I-	=	$\mathbf{I_2}$	+ 2 e ⁻
Steig Elek	$\mathrm{Fe^{2+}}$	=	Fe^{3+}	+ e-
<u> </u>	2 Cl ⁻	=	Cl_2	+ 2 e ⁻

Steigende Tendenz zur Elektronenaufnahme →

Beispiele


- 1. Abscheidung von Ag auf einem Kupferpfennig
- 2. Abscheidung von Cu auf einem Zinkblech
- 3. Reinigung von Silber mit Alufolie: $3 \text{ Ag}_2\text{S} + 2 \text{ Al} + 6 \text{ H}_2\text{O} \rightarrow 2 \text{ Al}(\text{OH})_3 + 6 \text{ Ag} + 3 \text{ H}_2\text{S}$

14.4 Galvanische Elemente

In einem galvanischen Element sind Oxidation und Reduktion räumlich durch ein Diaphragma, das aus porösem Material besteht, getrennt.

Daniell-Element

Beispiel: $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$

Redoxpaar 1 (Halbelement 1)

$$Zn^{2+} + 2e^- \rightarrow Zn$$

Redoxpaar 2 (Halbelement 2)

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

Der Strom, der von der Anode (Zn) zur Kathode (Cu) fließt, entspricht der in der Redoxreaktion übertragenen Elektronenzahl. Das Gesamtpotential ergibt sich aus

$$\Delta E = E_{Cu} - E_{Zn}$$
 (Elektromotorische Kraft)

der Differenz der Redoxpotentiale

14.5 Berechnung von Redoxpotentialen

Das Redoxpotential E wird durch die Nernst'sche Gleichung beschrieben

$$\mathbf{E} = \mathbf{E}^{0} + \frac{\mathbf{R} \cdot \mathbf{T}}{\mathbf{z} \cdot \mathbf{F}} \ln \frac{\mathbf{c}_{\mathbf{Ox}}}{\mathbf{c}_{\mathbf{Red}}}$$

⇒ Redoxpotential E für die Reaktion:

Red \rightleftharpoons Ox + e⁻

mit

 E^0 = Standard(Normal)potential

R = Gaskonstante = 8,314 J/Kmol

T = Temperatur

 $F = Faraday-Konstante = N_A \cdot e$

= 96487 As/mol (C/mol)

z = Zahl der übergehenden Elektronen

Für T = 293 K und $lnx = (ln10) \cdot lgx$

$$E = E^0 + \frac{0.059}{z} lg \frac{c_{Ox}}{c_{Red}} [V]$$

Beispiel: $Cu^{2+} + Zn^0 \rightarrow Cu^0 + Zn^{2+}$

Redoxpaar 1 (Halbelement 1)

$$Zn^{2+} \rightarrow Zn + 2e^{-}$$

$$E_{Zn} = E_{Zn}^0 + 0.059/2 \cdot \lg c_{Zn}^{2+}$$

Redoxpaar 2 (Halbelement 2)

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

$$E_{Cu} = E_{Cu}^0 + 0.059/2 \cdot lg c_{Cu}^{2+}$$

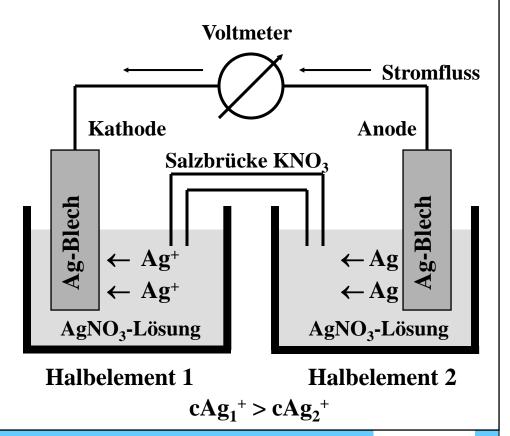
Gesamtpotential

$$\Delta E = E_{Cu} - E_{Zn} = E_{Cu}^0 - E_{Zn}^0 + 0.059/2 \cdot lg(c_{Cu}^{2+}/c_{Zn}^{2+})$$

14.5 Berechnung von Redoxpotentialen

Da das Redoxpotential von der Ionenkonzentration bzw. der Aktivität abhängt, kann man eine galvanisches Element mittels einer Konzentrationskette aufbauen

Reaktion im Halbelement 1


$$Ag^{+} + e^{-} \rightarrow Ag$$

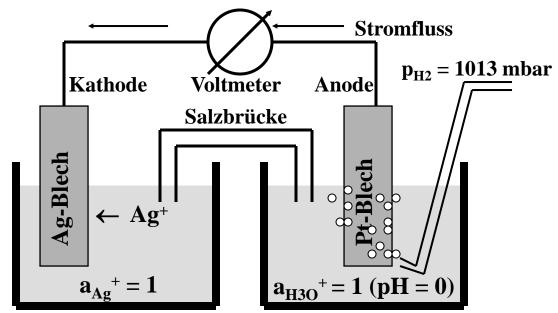
 $E_{Ag(1)} = E_{Ag}^{0} + 0.059 \cdot lg c_{Ag}^{+}(1)$

Reaktion im Halbelement 2

$$Ag \rightarrow Ag^{+} + e^{-}$$
 $E_{Ag(2)} = E_{Ag}^{0} + 0.059 \cdot lg c_{Ag^{+}(2)}^{+}$

Gesamtpotential

$$\Delta E = E_{Ag(1)} - E_{Ag(2)} = 0.059 \cdot lg(c_{Ag^+(1)}/c_{Ag^+(2)})$$


14.6 Standardwasserstoffelektrode

Das Potential eines einzelnen Redoxpaares ist nicht direkt bestimmbar, da immer nur die Gesamtspannung eines galvanisches Elementes gemessen werden kann

 \Rightarrow Wahl einer Bezugselektrode \Rightarrow Standardwasserstoffelektrode mit $E_H^0 = 0.0 \text{ V}$

Redoxsystem: $H_2 + 2 H_2O \rightleftharpoons 2 H_3O^+ + 2 e^-$

Redoxpotential: $E_H = E_H^0 + 0.059/2 \cdot lg(a_{H3O}^2 + /p_{H2})$

Standardwasserstoffelektrode

für $a_{H3O}^{+} = 1$ und $p_{H2} = 1$ bar gilt $E_{H} = E_{H}^{0} = 0,0 \text{ V}$

$$\Delta E = E_{Ag} - E_{H}$$

$$\Delta E = E_{Ag}^{0} + 0.059 \cdot lga_{Ag}^{+}$$

für
$$a_{Ag}^{+} = 1$$

 $\Delta E = E_{Ag}^{0} = +0.80 \text{ V}$

Standardsilberelektrode

Die Redoxpotentiale aller Redoxsysteme werden auf die Standardwasserstoffelektrode bezogen. Nach steigendem Potential geordnet erhält man die elektrochemische Spannungsreihe

Reduzierte Form	duzierte Form \rightleftharpoons Oxidierte Form $+ z e^{-}$ Standardpotentia		ential E ⁰ [V]		
Li	=	Li ⁺	+ e-	-3,04	
K	=	\mathbf{K}^{+}	+ e-	-2,92	\uparrow \mathbf{v}
Na	=	Na^+	+ e-	-2,71	Steigende ⊖ abnagieatS
Zn	=	$\mathbf{Z}\mathbf{n}^{2+}$	+ 2 e ⁻	-0,76	ger
Fe	=	Fe ²⁺	+ 2 e ⁻	-0,41	as Ide
Sn	=	Sn^{2+}	+ 2 e ⁻	-0,14	
$H_2 + 2 H_2O$	=	2 H ₃ O ⁺	+ 2 e ⁻	0,0	igende Reduktionskraft yearysuoitabixO əpuəgiə
Cu	=	Cu^{2+}	+ 2 e-	0,34	npo dan
2 I-	=	${f I_2}$	+ 2 e ⁻	0,54	8 6
Fe ²⁺	=	Fe ³⁺	+ e-	0,77	sa de
Ag	=	$\mathbf{A}\mathbf{g}^{\scriptscriptstyle +}$	+ e-	0,80	Steigende ← ŋgraysu
Hg	=	$ m Hg^{2+}$	+ e-	0,85	
Au	=	Au^{3+}	+ 3 e-	1,50	₹ ↓
2 F-	=	$\mathbf{F_2}$	+ 2 e ⁻	2,87	
Pr ³⁺	=	Pr ⁴⁺	+ e-	3,2	
Allgemeine Chemie					Folie 123

Prof. Dr. T. Jüstel

Mit Hilfe der Spannungsreihe kann man vorhersagen, welche Redoxreaktionen möglich sind. Die reduzierte Form eines Redoxsystems gibt Elektronen nur an die oxidierte Form solcher Redoxsysteme ab, die in der Spannungsreihe darunter stehen

Reduzie	erte Form	=	Oxidierte I	Form + z e ⁻	Standardpotential E ⁰ [V]
Zn		=	$\mathbb{Z}n^{2+}$	+ 2 e ⁻	-0,76
Fe		1	\rightarrow Fe ²⁺	+ 2 e ⁻	-0,41
Cu		7	$\stackrel{>}{\sim}$ Cu ²⁺	+ 2 e ⁻	+0,34

Es sind also folgende Reaktionen möglich:

$$\begin{array}{lll} Fe^{2+} + Zn \ \to \ Fe + Zn^{2+} & \Delta E = E^0_{\ Fe} - E^0_{\ Zn} = +0,35 \ V \\ Cu^{2+} + Zn \ \to \ Cu + Zn^{2+} & \Delta E = E^0_{\ Cu} - E^0_{\ Zn} = +1,10 \ V \\ Cu^{2+} + Fe \ \to \ Cu + Fe^{2+} & \Delta E = E^0_{\ Cu} - E^0_{\ Fe} = +0,75 \ V \\ & (Potentiale \ gelten \ für \ c_{Me1} = c_{Me2}) \end{array}$$

Die elektromotorische Kraft ΔE (EMK) ist mit der freien Standard-Reaktionsenthalpie ΔG^0 verknüpft.

$$\Delta \mathbf{G}^0 = -\mathbf{z} \cdot \mathbf{F} \cdot \Delta \mathbf{E}^0$$

Beispiel

$$Cu(s) + 2 H^+(aq) \rightarrow Cu^{2+}(aq) + H_2(g)$$

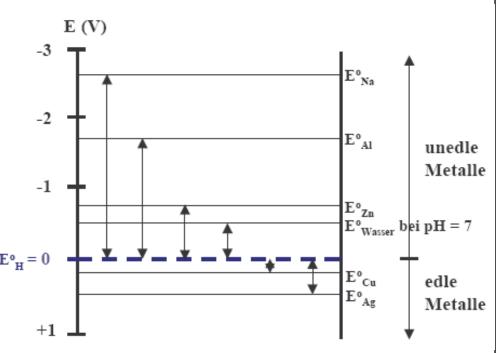
$$\Delta E^0 = E^0_H - E^0_{Cu} = 0.0 - 0.34 = -0.34 V$$

$$\Delta G^0 = -2.96500 \text{ As/mol} \cdot 0.34 \text{ V}$$

= 65610 AVs/mol

= 65610 Ws/mol

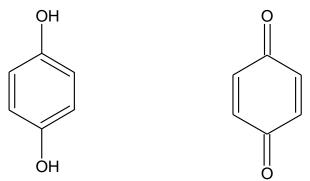
= 65610 J/mol ⇒ stark positive Standard-Reaktionsenthalpie


= 65,610 kJ/mol ⇒ Reaktion läuft nicht freiwillig ab "Edelmetall"

Bei vielen Redoxreaktionen hängt das Redoxpotential vom pH-Wert ab.

Beispiel: Reaktion von Metallen mit Säuren und Wasser

$$pH = 0$$
: $E_H = E_H^0 + 0.059/2 \cdot lg(a_{H3O}^2 + /p_{H2})$
= $E_H^0 + 0.0$
= 0.0 V


$$\begin{split} pH &= 7 \text{: } E_H = E^0_H + 0,\!059/2 \cdot \! lg(a^2_{H3O}{}^+\!/p_{H2}) \\ &= E^0_H + 0,\!059/2 \cdot \! lg10^{-14} \\ &= \text{-}0,\!41 \ V \end{split}$$

Allgemein gilt: $E_H = 0.059/2 \cdot lg[H_3O^+]^2 = -0.059 \cdot pH$

- ⇒ Der pH-Wert lässt sich also elektrochemisch bestimmen
- **⇒** Messprinzip der pH-Elektrode

Das pH-abhängige Redoxystem Chinon/Hydrochinon

Hydrochinon + 2 $H_2O \rightleftharpoons Chinon + 2 H_3O^+ + 2 e^-$

$$E^0 = -0.70 \text{ V}$$

$$E = E^{0} + \frac{0.059}{z} \lg \frac{\text{[Chinon][H3O]}^{2}}{\text{[Hydrochinon]}} = E^{0} + \frac{0.059}{z} \lg \frac{\text{[Chinon]}}{\text{[Hydrochinon]}} - 0.059 \cdot \text{pH}$$

Biochemisch wichtige Chinon/Hydrochinon-Systeme

Plastochinon

Ubichinon (Coenzym Q)

Tocopherol (Vitamin E) \rightarrow

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C} \\ \\ \mathsf{CH_3} \\ \\ \mathsf$$

⇒ Elektronentransport in der Photosynthese und in der Atmungskette

14.7 Exkurs: Lichtreaktion in der Photosynthese

Der biochemische Energieträger ATP wird durch einen elektrochemischen Gradienten erzeugt

$$H_2O \xrightarrow{hy} \frac{1}{2}O_2\uparrow + 2H^+ + 2e^-$$

 Δ pH ~ 3,5

$$\Delta E = E_1 - E_2$$

= 0,059/z·log(c₁/c₂)
= 0,059· Δ pH
= 0,2 V

$$\Delta G = -n \cdot F \cdot \Delta E = 20 \text{ kJ/mol}$$

$$ADP + HPO_4^{2-} \rightarrow ATP$$

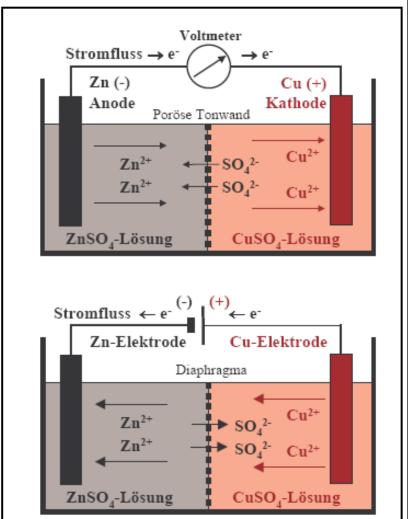
$$\Delta G = 30.5 \text{ kJ/mol}$$

14.8 Elektrolyse

Redoxvorgänge, die nicht freiwillig ablaufen, können durch Zuführung elektrischer

Arbeit erzwungen werden

Beispiel


freiwillig (galvanischer Prozess)

$$Cu^{2+} + Zn \leftarrow Cu + Zn^{2+}$$
erzwungen (Elektrolyse)

Bei der Elektrolyse wird eine Gleichspannung U angelegt

 $U = Zersetzungsspannung \Delta E + Überspannung$

Die Überspannung wird wegen der kinetischen Hemmung der Produktbildung an den Elektroden benötigt

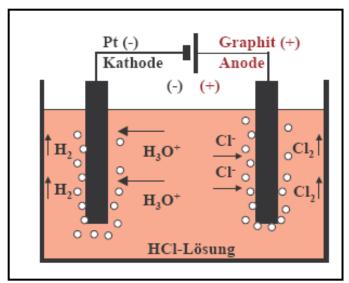
14.8 Elektrolyse

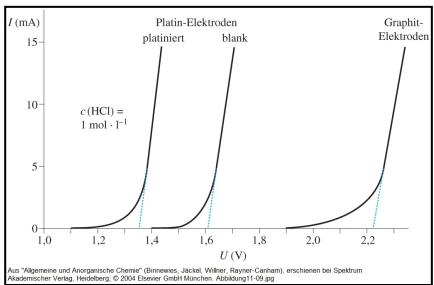
Elektrolyse von Salzsäure

Kathodenreaktion

$$H_3O^+ + e^- \rightarrow \frac{1}{2} H_2 \uparrow + H_2O$$

Anodenreaktion


$$Cl^- \rightarrow \frac{1}{2} Cl_2 \uparrow + e^-$$


Gesamtreaktion

$$H_3O^+ + Cl^- \rightarrow \frac{1}{2} H_2^+ + \frac{1}{2} Cl_2^+ + H_2O$$

 $\Delta E = E^0_{1/2Cl2/Cl^-} - E^0_{H+/1/2H2} = +1,36 V$

Die Überspannung hängt von vielen Faktoren ab:

- Elektrodenmaterial
- Stromdichte
- Temperatur
- abgeschiedener Stoff
- Oberflächenmorphologie

14.9 Galvanische Spannungsquellen

Galvanische Elemente sind Energieumwandler, in denen chemische Energie, direkt in elektrische Energie umgewandelt wird.

Primärelemente

Sekundärelemente (Akkumulatoren)

Brennstoffzellen

irreversibel reversibel

irreversibel

Primärelemente ⇒

Minuspol

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Pluspol

 $2 \text{ MnO}_2 + 2 \text{ H}_2\text{O} + 2 \text{ e}^- \rightarrow 2 \text{ MnO(OH)} + 2 \text{ OH}^-$

Elektrolyt

Zink-Kohle-Batterie (Leclanche-Element)

 $2 NH_4Cl + 2 OH^- + Zn^{2+} \rightarrow Zn(NH_3)_2Cl_2 + 2 H_2O$

Alkali-Mangan-Batterie

 $2 \text{ KOH} + 2 \text{ OH}^{-} + \text{Zn}^{2+} \rightarrow 2 \text{ K}^{+} + [\text{Zn}(\text{OH})_{4}]^{-}$

Zink-Kohle-Batterie

Alkali-Mangan-Batterie

14.9 Galvanische Spannungsquellen

Sekundärelemente

1. Ni-Cd-Akku

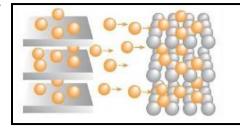
Minuspol: $Cd + 2 OH^{-} \rightarrow Cd(OH)_{2} + 2 e^{-}$

Pluspol: $2 \text{ NiO(OH)} + 2 \text{ H}_2\text{O} + 2 \text{ e}^- \rightarrow 2 \text{ Ni(OH)}_2 + 2 \text{ OH}^-$

2. Pb-Akku

Minuspol: $Pb + 2 SO_4^{2-} \rightarrow PbSO_4 + 2 e^{-}$

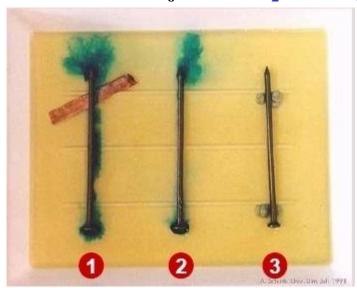
Pluspol: $PbO_2 + SO_4^{2-} + 4 H_3O^+ + 2 e^- \rightarrow 2 PbSO_4 + 2 H_2O$



3. Lithium-Ionen-Akku

Minuspol: $\text{LiCoO}_2 \rightarrow \text{Li}_{0.35}\text{CoO}_2 + 0.65 \text{ Li}^+ + 0.65 \text{ e}^-$

Pluspol: $C_n + 0.65 Li^+ + 0.65 e^- \rightarrow C_n Li_y$



14.10 Korrosion- und Korrosionsschutz

Korrosion, d.h. Oxidation von wertvollen Metallen kann durch Lokalelemente beschleunigt oder verlangsamt werden

Korrosion von Eisen in einer Kochsalzlösung durch $K_4[Fe(CN_6)]$ -Lösung sichtbar gemacht:

$$2 \operatorname{Fe}^{2+} + [\operatorname{Fe}(\operatorname{CN}_6)]^{4-} \to \operatorname{Fe}_2[\operatorname{Fe}(\operatorname{CN}_6)] \downarrow (\operatorname{blau})$$

$$Cu^{2+} + 2 e^{-} \rightarrow Cu$$
 $E^{0}_{Cu} = +0.34 \text{ V}$

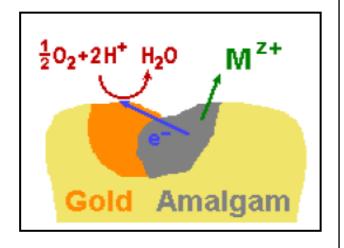
$$Fe^{2+} + 2 e^{-} \rightarrow Fe$$
 $E^{0}_{Fe} = -0.41 \text{ V}$

$$Zn^{2+} + 2 e^{-} \rightarrow Zn$$
 $E^{0}_{Zn} = -0.76 V$

1) Cu/Fe-Lokalelement
$$Fe \rightarrow Fe^{2+}$$

2) Fe-Halbzelle Fe
$$\rightarrow$$
 Fe²⁺

3) Fe/Zn-Lokalelement
$$Zn \rightarrow Zn^{2+}$$


Bauteile aus Eisen können durch Anschluss unedlerer Metalle (Zn, Mg, ...) als Opferanoden vor Korrosion geschützt werden ⇒ Brücken, Rohrleitungen, Tanks etc.

14.10 Korrosion- und Korrosionsschutz

Lokalelemente bilden sich auch beim Kontakt von Amalgam- und Goldfüllungen aus

Metalle im Amalgam: Sn, Cu, Ag, Hg

$$Sn^{2+} + 2 e^{-} \rightarrow Sn$$
 $E^{0}_{Sn} = -0.14 \text{ V}$ $Cu^{2+} + 2 e^{-} \rightarrow Cu$ $E^{0}_{Cu} = +0.34 \text{ V}$ $Hg^{2+} + 2 e^{-} \rightarrow Hg$ $E^{0}_{Hg} = +0.85 \text{ V}$ $O_{2} + 2 H_{2}O + 4 e^{-} \rightarrow 4 OH^{-}$ $E^{0}_{O_{2}/OH^{-}} = +1.24 \text{ V}$ $Au^{3+} + 3 e^{-} \rightarrow Au$ $E^{0}_{Au} = +1.50 \text{ V}$

Durch die Ausbildung des Lokalelementes gehen verstärkt die unedleren Metalle in Lösung, also in den Speichel.

Es muss daher vermieden werden, dass Amalgam- und Goldfüllungen miteinander in Kontakt kommen.