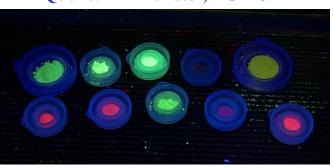
Funktionsmaterialien

Gliederung der Vorlesung


Wer Neues sehen will, muss Neues erfinden!

- 1. Allgemeine Einführung
- 1.1 Fragen zur Verwendung von Funktionsmaterialien
- 1.2 Einordnung/Bedeutung der Materialwissenschaften
- 1.3 Geschichtliches
- 1.4 Einteilungs- und Ordnungsprinzipien
- 1.5 Struktur-Eigenschafts-Beziehungen
- 1.6 Phasen und Kristalle
- 2. Phänomenologische Eigenschaften von Funktionsmaterialien
- 2.1 Mechanische Eigenschaften
- 2.2 Thermische Eigenschaften
- 2.3 Elektrische und dielektrische Eigenschaften
- 2.4 Magnetische Eigenschaften
- 2.5 Optische Eigenschaften
- 2.6 Katalytische Eigenschaften
- 3. Funktionsmaterialien und ihre Anwendungen
- 3.1 Keramische Materialien
- 3.2 Gläser und Glaskeramik

Quelle: FEE Idar-Oberstein

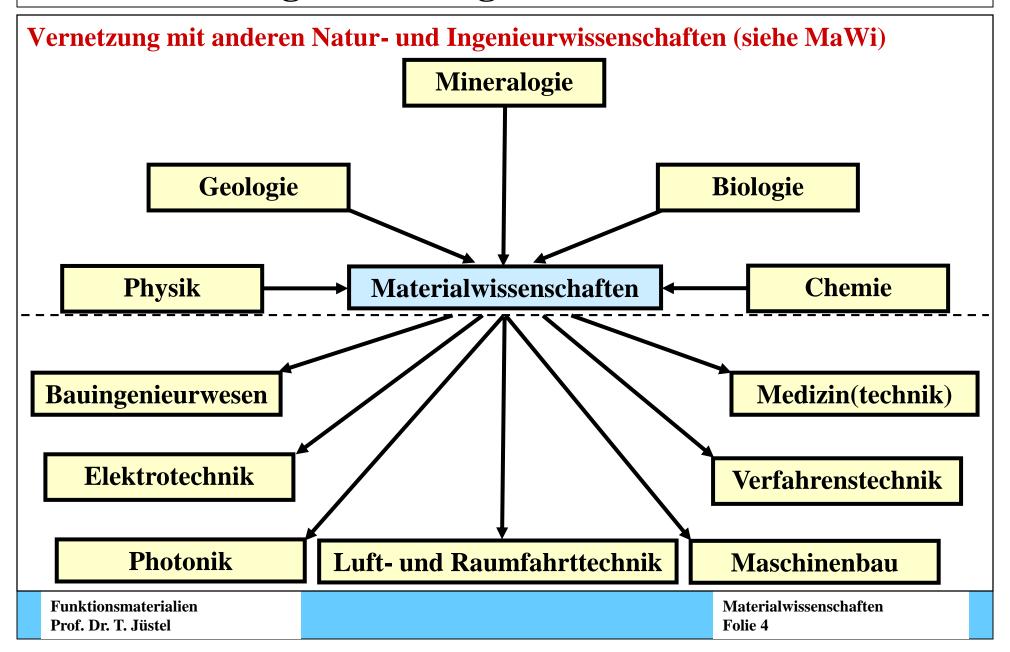
Quelle: FH Münster, AG TOM

Literaturempfehlungen

- 1. U. Müller: Anorganische Strukturchemie, Teubner Studienbücher 1991
- 2. A.R. West, Grundlagen der Festkörperchemie, VCH Verlagsgesellschaft, Weinheim 1992
- 3. H. Briehl, Chemie der Werkstoffe, B.G. Teubner Verlagsgesellschaft, Stuttgart 1995
- 4. D.R. Askeland, Materialwissenschaften: Grundlagen, Übungen, Lösungen, Spektrum Akademischer Verlag, Heidelberg/Berlin/Oxford 1996
- 5. L. Smart, E. Moore: Einführung in die Festkörperchemie, Vieweg-Lehrbuch 1997
- 6. W. Göpel, C. Ziegler, Einführung in die Materialwissenschaften: Physikalisch-chemische Grundlagen und Anwendungen, B.G. Teubner Verlagsgesellschaft, Stuttgart/Leipzig 1996
- 7. E. Roos, K. Maile, Werkstoffkunde für Ingenieure, Springer-Verlag, Berlin/Heidelberg 2002
- 8. Ch. Kittel, Einführung in die Festkörperphysik, Oldenbourg-Wissenschaftsverlag, München 2006

1.1. Fragen zur Verwendung von Funktionsmaterialien

Einige Überlegungen vor einer Materialauswahl


- 1. Ist das Material grundsätzlich für die vorgesehene Anwendung geeignet?
 - \Rightarrow Stabilität gegen Temperaturänderungen, Luftfeuchtigkeit, Luftsauerstoff, andere Gase wie N₂, CO₂, NH₃, Hg, Chemikalien, mechanische Belastungen, elektrische Felder, magnetische Felder, Ionen- oder Elektronenbeschuss usw.
- 2. Gibt es geeignete Technologien zur Bearbeitung des Materials in die vorgesehene äußere Form?
 - ⇒ Herstellung dünner oder dicker Schichten, Bearbeitung sehr harter, hydrolyseempfindlicher, temperaturempfindlicher oder spröder Materialien
- 3. Werden Materialeigenschaften durch den Bearbeitungsprozess verändert?
 - ⇒ Abhängigkeit der Materialeigenschaften von der Schichtdicke oder von der Temperaturbehandlung
- 4. Ist das Material umweltverträglich? Gibt es Schadstoffe an die Umwelt ab?
- 5. Kann das Material nach der Verwendung umweltgerecht entsorgt bzw. recycelt werden?

Voraussetzung zur Beantwortung dieser Fragen

⇒ Breites (Querschnitts)Wissen über die chemischen (katalytischen), mechanischen, thermischen, elektrischen, magnetischen und optischen Eigenschaften unterschiedlicher Materialien

Funktionsmaterialien Prof. Dr. T. Jüstel

1.2 Einordnung/Bedeutung der Materialwissenschaften

1.2 Einordnung/Bedeutung der Materialwissenschaften

Ziel der Materialwissenschaften

Exakter atomarer Aufbau eines Materials ⇒ Vorhersage der makroskopischen Eigenschaften

Das Problem dabei ist nur, dass

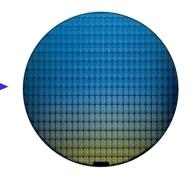
- der exakte Aufbau niemals bekannt ist, da jedes Material über Verunreinigungen,
 Defekte sowie individuelle Gefüge und Partikelgrößenverteilungen verfügt
- keine physikalische Theorie 100%-ig exakte Aussagen über makroskopische Phänomene wie elektrische Leitfähigkeit, Magnetismus, Absorptionsspektrum, Lumineszenz, Quantenausbeute, etc. machen kann

Also "begnügt" sich die Materialwissenschaft mit der

- Beschreibung der Eigenschaften der Materialien
- Untersuchung der Ursachen dieser Eigenschaften
- Materialauswahl
- Materialsynthese und -optimierung
- Materialanalyse

Funktionsmaterialien Prof. Dr. T. Jüstel

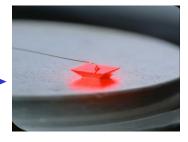
1.2 Einordnung/Bedeutung der Materialwissenschaften


Bedeutung von Funktionsmaterialien

Das Tempo des technischen Fortschrittes wird entscheidend von der Materialentwicklung (Hardware) geprägt

1. Beispiel: Mikroelektronik

Großrechner mit Vakuumröhren (1950)



Si-Wafer für die Mikroelektronik (2000)

2. Beispiel: Lichtquellen

Leuchtstoffröhren seit ca. 1940

(Al,In,Ga)P Chip für rote Leuchtdioden (2000)

Algorithmen, Software und elektronische Treiber lassen sich dagegen schnell entwickeln!

1.3 Geschichtliches

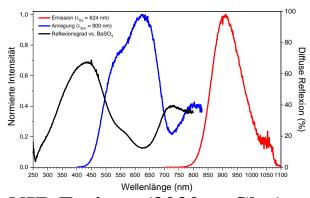
Entwicklung der Materialbeherrschung

Materialkunde (Werkstoffkunde) "Trial + Error" Mündliche Überlieferung

Bsp.: Ägyptischblau

Blaupigment (~2600 v. Chr.)

Chemie


Koordinationschemie Festkörperchemie Hochdruckchemie Polymerchemie

Physik

Elektromagnetismus Festkörperphysik Quantenmechanik

Statistische Thermodynamik

Materialwissenschaft
(Werkstoffwissenschaft)
gezielte Synthese
Theoretisches Verständnis
von Struktur und Funktion

→ Materialdatenbanken

 \rightarrow NIR Emitter (2020 n. Chr.)

Funktionsmaterialien Prof. Dr. T. Jüstel

1.3 Geschichtliches

Entwicklung der Materialbeherrschung

100.000 v. Chr.	Holz, Knochen, Stein	600 n. Chr.	Chinesisches Porzellan
9000 v. Chr.	Fasern	1500 n. Chr.	Stahl, Gusseisen
8000 v. Chr.	Kupfer	1700 n. Chr.	Böttger Porzellan (Meissen)
7000 v. Chr.	Lehmziegel	1820 n. Chr.	Plastik, Gummi
6000 v. Chr.	Keramik	1850 n. Chr.	Beton
5000 v. Chr.	Hanf	1900 n. Chr.	Flachglas
3500 v. Chr.	Töpferscheibe	1919 n. Chr.	Rostfreier Stahl
3000 v. Chr.	Glasuren, Bronze	1930 n. Chr.	Al-Legierungen
2500 v. Chr.	Seide	1950 n. Chr.	Halbleiter(dioden)
2000 v. Chr.	Glas	1960 n. Chr.	Ti-Legierungen
1500 v. Chr.	Eisen	1986 n. Chr.	Hochtemperatursupraleiter
1000 v. Chr.	Atomhypothese	1993 n. Chr.	Blaue (In,Ga)N LED
500 v. Chr.	Glasierte Ziegel	2000 n. Chr.	Komposite, Superlegierungen
25 v. Chr.	Zement	2007 n. Chr.	UV-C (Al,Ga)N LED
um 0	Glasblasen	2020 n. Chr.	YH ₁₀ RT-Supraleiter
Eventution amost anistica			Matarial reiggon gala often

Funktionsmaterialien Prof. Dr. T. Jüstel

1.3 Geschichtliches

Materialien prägen Regionen und Zeitalter

El Dorado

Kupfer Cuprum Aes cyprium Erz von der Insel Zypern

 \rightarrow Bronzezeit

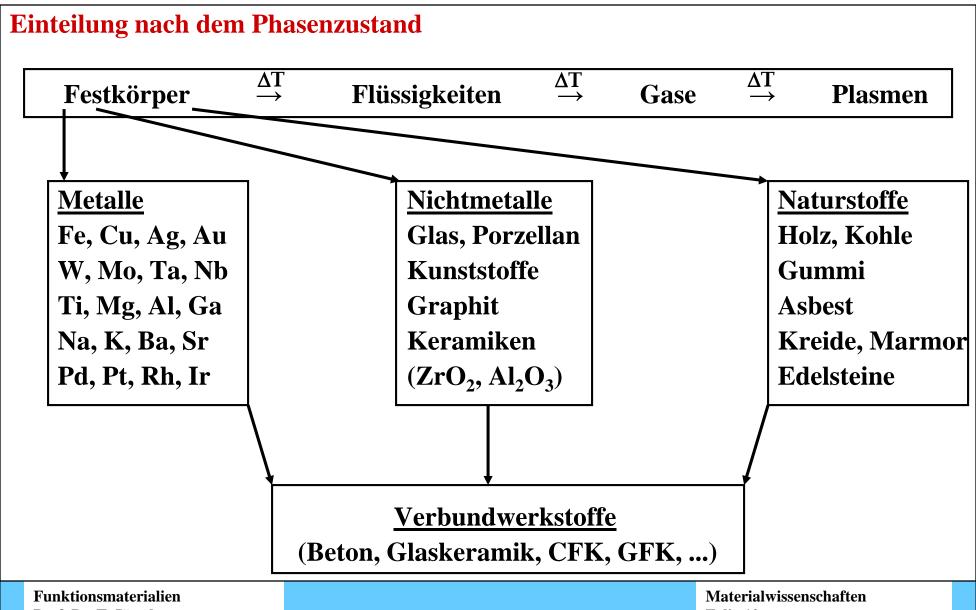
Silber Argentum Argentina Argentinien

der Goldene sagenhaftes Goldland in Südamerika

Elfenbein Côte d'Ivoire Elfenbeinküste Lieferant von Stoßzähnen

Silicium Silicon Silicon Valley Computertechnologie in Kalifornien

Seltene Erden Rare Earth Rare Earth Age



The second second

Gold

1.4 Einteilungs- und Ordnungsprinzipien

Prof. Dr. T. Jüstel

Folie 10

1.4 Einteilungs- und Ordnungsprinzipien

Strukturmaterialien (Klassische Werkstoffe)

⇒ Mechanische Eigenschaften stehen im Vordergrund

Baustoffe Zement, Mörtel

Kalk, Gips

Keramik Baukeramik

Gefäßkeramik

Technische Keramik (Motorenbauteile)

Glas und Glaskeramik

Funktionsmaterialien (Moderne Werkstoffe)

⇒ Materialien, die zu einer bestimmten Funktionsgruppe gehören

Keramik Biokeramik

Elektrokeramik

Magnetokeramik

Katalysatoren

Optokeramik

• Einkristalle Laser-Kristalle, Frequenzverdoppler (NLO-Kristalle)

Halbleiter, Faraday-Rotatoren, Szintillatoren

Funktionsmaterialien Prof. Dr. T. Jüstel

1.4 Einteilungs- und Ordnungsprinzipien

Eigenschaften von Materialien

Metalle: Hohe elektr. und thermische Leitfähigkeit, hohe Festigkeit, leichte Verformbarkeit Bsp: Cu als Leitungsmaterial, gehärtete Stähle für Werkzeuge

Halbleiter: Leichte Einstellbarkeit der elektr. Leitfähigkeit durch Dotierung, sehr spröde Bsp: Si, Ge, GaAs, (Ga_{1-x}In_x)N als Materialien für Dioden und Solarzellen

Keramiken: Geringe elektrische und thermische Leitfähigkeit, eignen sich gut für elektrische Isolierung und Wärmeisolierung, hohe Temperaturstabilität, sehr hart, sehr spröde *Bsp*: Kondensatoren, Al₂O₃ und MgO als feuerfeste Behälter, Porzellan

Polymere: In der Regel geringe elektrische und thermische Leitfähigkeit, hohe mechanische Flexibilität, geringe Temperaturstabilität

Bsp: Polyethylen als Verpackungsmaterial, Epoxidharze zur Umhüllung elektr. Bauelemente

Verbundwerkstoffe: Hohe Festigkeit, recht geringe Dichte

Bsp: Beton, Graphit-Epoxid als Flugzeugbauteile, CFK

Funktionsmaterialien Prof. Dr. T. Jüstel

1.5 Struktur-Eigenschafts-Beziehungen

Elektronische Struktur

- frei bewegliche Elektronen führen zu hoher elektrischer und thermischer Leitfähigkeit und zu starker Absorption
- ungepaarte Elektronen führen zu para- sowie zu ferro- oder (anti)ferromagnetischem Verhalten
- schwach an den Kern gebundene Elektronen können durch elektromagnetische Strahlung leicht verschoben werden, d.h. Beeinflussung der optischen Eigenschaften

Atomare Struktur

- der Kristallstrukturtyp beeinflusst stark die mechanischen, elektrischen, thermischen, katalytischen und optischen Eigenschaften
 Graphit (Schichtstruktur) ↔ Diamant (Raumnetzstruktur)
- amorphe Materialien haben besondere physikalische Eigenschaften, z.B. ist Glas transparent, nach der Kristallisation aber oft lichtundurchlässig

Funktionsmaterialien Prof. Dr. T. Jüstel

1.5 Struktur-Eigenschafts-Beziehungen

Nanostruktur

- durch Nanostrukturierung entstehen sehr viele Grenzflächen, d.h. ein großer Teil der Atome ist an Grenzflächen lokalisiert und diese haben andere physikalische Eigenschaften als Volumenatome
- Quantengrößeneffekte (Quantum size effects)

Mikrostruktur (Gefüge)

- Mischung und Entmischung auf der Mikrometerskala in Gläsern und Metalllegierungen
- Beeinflusst vor allem mechanische und optische Eigenschaften
- Mikrokristalline Materialien: Zusammengesinterte Mikrokristallite
- Glaskeramiken: Mikrokristallite in einer Glasmatrix
- Verbundwerkstoffe: Unterschiedliche Phasen

1.6 Phasen und Kristalle

Phasen und Phasenumwandlungen

Phase: Homogenes Stoffsystem in einem definierten thermodynamischen Zustand

Unabhängige Zustandsvariablen: T, p, chem. Zusammensetzung x, Magnetfeldstärke

Abhängige Zustandsvariablen(-funktionen): V, U, H, S, F, G, Polarisation, Magnetisierung, elektrischer Widerstand

Phasenumwandlung: Bei Änderung der unabhängigen Zustandsvariablen tritt in mindestens einer Zustandsfunktion, z.B. G(p,T), eine nicht-differenzierbare Stelle auf:

Unstetigkeit in der 1. Ableitung: Phasenumwandlung 1. Art, z.B. Schmelzen von Hg bei -39 °C Unstetigkeit in der 2. Ableitung: Phasenumwandlung 2. Art, z.B. Glasübergang von Polystyrol bei ca. 100 °C

Polymorphie: Eigenschaft eines homogenen Stoffsystems in Abhängigkeit von unabhängigen Zustandsvariablen in verschiedenen Gittertypen zu kristallisieren

Funktionsmaterialien Prof. Dr. T. Jüstel

1.6 Phasen und Kristalle

Kristalle und Mischkristalle

Idealkristall: Mathematische, räumlich periodische Abstraktion der realen

Kristalle

Substitutionsmischkristall: Im Kristallgitter werden Atome durch Fremdatome isotyp ersetzt

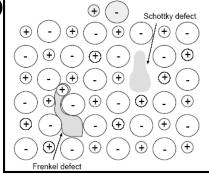
Einlagerungsmischkristall: Im Kristallgitter werden Fremdatome auf Zwischengitterplätze

eingebaut

Realkristall: Idealkristall + Gitterfehler + Verunreinigungen (Dotierungen)

<u>Gitterfehler verschiedener Dimensionalität (Dichte der Defekte ~ e-EA/kT)</u>

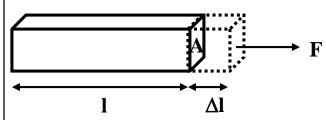
0-dim. (Punktfehler): Schottky-Defekte (Paar einer Kationen- und Anionenleerstelle)


Frenkel-Defekte (Ion \rightarrow Zwischengitterplatz)

1-dim. (Linienfehler): Versetzungen (Stufen-, Schrauben-)

2-dim. (Flächenfehler): Stapelfehler, Grenzflächen (Oberflächen,

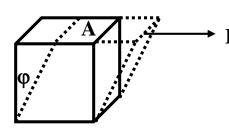
Phasengrenzen, Zwillingsgrenzen, ...)


3-dim. (räumliche Fehler): Hohlräume, Poren, Einschlüsse, ...

Ausgewählte mechanische Größen

- ⇒ Elastizität, Plastizität, Bruchfestigkeit, Duktilität, Härte (Mohs, Brinell, Vickers, Rockwell, Knoop, Shore, ... → Härteskalen) → Diverse Prüfkörper
- ⇒ Unterschiedliche Arten der mechanischen Verformung

Zugexperiment

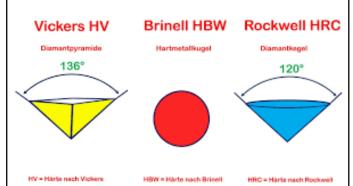

Zugspannung $\sigma = F/A$

Dehnung

 $\varepsilon = I/\Delta I$

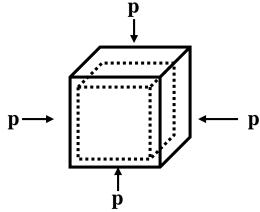
Elastizitätsmodul $E = \sigma/\epsilon$

Scherexperiment


Scherspannung $\tau = F/A$

Scherwinkel

Schermodul


 $G = \tau / \varphi$

φ

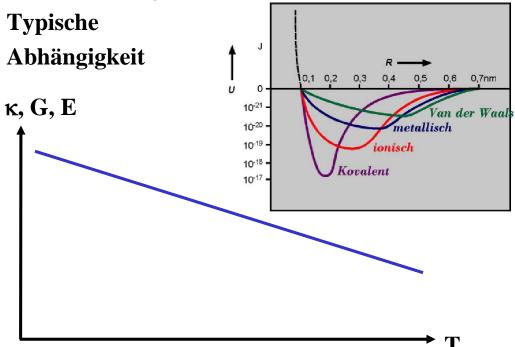
Wichtige mechanische Größen

Kompressionsexperiment

p

Relative Volumenänderung $\Delta V/V$

Kompressionsmodul $\kappa = p/(\Delta V/V)$

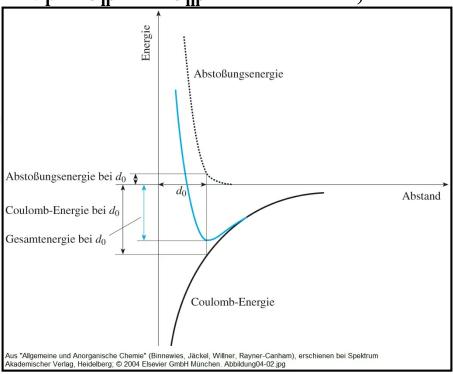

Die Module κ, G und E sind nicht unabhängig voneinander, sondern miteinander verknüpft

Material	Elastizitätsmodul E
Naturkautschuk	0,1 GPa
Polyethylen	2 GPa
Polystyrol	3 GPa
Pb	18 GPa
ß-Sn	54 GPa
Al	69 GPa
Fensterglas	70 GPa
SiO ₂ (Quarz)	74 GPa
Au	80 GPa
Cu	110 GPa
Stahl	207 GPa
$Y_3Al_5O_{12}$	283 GPa
\mathbf{W}	355 GPa
Al_2O_3	373 GPa
SiC	470 GPa

Druck

Temperatureinfluss auf Moduln

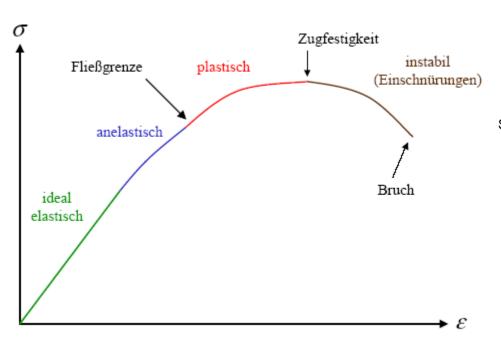
Beschreibung durch Lennard-Jones Potential: $V_r = C_n/r^n - C_m/r^m$ mit n = 12, m = 6

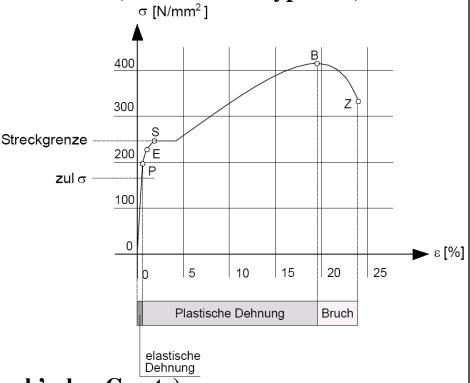


Polymere (hochelastisch) \Rightarrow V.D.W. WW.

Metalle (elastisch) \Rightarrow metallische WW.

Keramiken (spröde) ⇒ **ionische WW**


Diamant, Nitride (sehr hart) \Rightarrow kovalente WW


Elastische Formänderung durch Auslenkung der Atome aus der Gleichgewichtslage

Elastizität und Plastizität

Spannungs-Dehnungs-Diagramm (typisch)

(für Baustahl Typ S235)

Elastische Formänderung:

Anelastische Formänderung:

Plastische Formänderung:

 $\sigma = \varepsilon \cdot E$ (Hook'sches Gesetz)

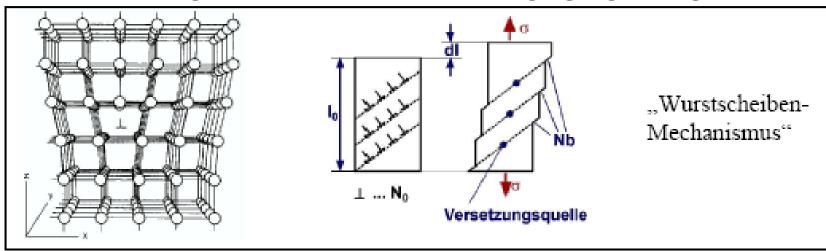
Hooke'sches Gesetz nicht mehr erfüllt (Hysterese)

dauernde Verformung ⇒ Duktilität

Funktionsmaterialien Prof. Dr. T. Jüstel

Duktilität ist die Fähigkeit eines Materials, sich plastisch zu verformen, ohne dabei zu brechen

$$\mathbf{D} = (\mathbf{L}_{\mathbf{b}} - \mathbf{L}_{\mathbf{0}}) / \mathbf{L}_{\mathbf{0}}$$


mit

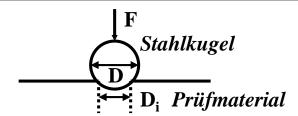
 L_0 = Länge der unbelasteten Probe

L_b = Länge der Probe nach dem Bruch

Als duktil werden Materialien mit D > 0.5 bezeichnet \Rightarrow viele Metalle

Plastische Formänderungen beruhen auf Translationsvorgängen gleitfähiger Versetzungen!

Funktionsmaterialien Prof. Dr. T. Jüstel


Die Härte gibt den Widerstand von Materialien gegen das Eindringen harter Objekte in ihre Oberfläche an

Mohs-Härte von 1-10 (Ritz-Test)

Empirisch aufgestellte Vergleichsskala

<u>Härte</u>	Material	chemische Formel
1	Talk	$\mathrm{Mg_3[Si_4O_{10}(OH)_2]}$
2	Gips (Halit)	CaSO ₄ ·2H ₂ O
3	Calcit (Kalkspat)	CaCO ₃
4	Fluorit (Flussspat)	CaF_2
5	Apatit	$Ca_5(PO_4)_3(F,Cl)$
6	Orthoklas (Feldspat)	K[AlSi ₃ O ₈]
7	Quarz	SiO_2
8	Topas	$Al_2SiO_4(F,OH)_2$
9	Korund	$Al_2O_3(\sim Cr, W, Ir)$
10	Diamant	C _{kubisch}

Brinell-Härte HB (Druck-Test)

$$HB = \frac{F}{(\pi/2)D(D - \sqrt{D^2 - D_i^2})}$$

Material	HB
Polymere	10-20
Messing (Cu-Zn)	50
einfache Stähle	200
gehärtete Stähle	500-1000
Diamant	7500

Funktionsmaterialien Prof. Dr. T. Jüstel

Thermische Eigenschaften von Festkörpern hängen u.a. stark von der Bindungsenergie zwischen den atomaren Bestandteilen ab

Bindungart Bindungsenergie [kJ/mol] Kovalenter Anteil ionischer Verbindungen

Ionisch 600 – 1500

Kovalent 500 – 1250

Metallisch 100 – 800

H-Brücken < 170

Van-der-Waals < 50

$$K = \exp^{-0.25(\Delta x)^2}$$

Die Bindungsstärke wirkt sich auf die Frequenz der Phononen (Gitterschwingungen) aus und damit auf folgende temperaturabhängige Eigenschaften:

- Molare Wärmekapazität (Molwärme) bzw. spezifische Wärmekapazität (spez. Wärme)
- Wärmeleitfähigkeit
- Thermischer Ausdehnungskoeffizient ⇒ Thermochromie
- Lumineszenz: Thermische Löschung, thermische Induktion, thermische Spektralverschieb.


Molare Wärmekapazität

$$c_{vm} = \left(\frac{\delta U_{m}}{\delta T}\right)_{V,N}$$

$$c_{pm} = \left(\frac{\delta H_{m}}{\delta T}\right)_{p,N}$$

Im Festkörper gilt: $c_{vm} \approx c_{pm}$

Temperaturabhängigkeit der Wärmekapazität

Bei hohen Temp.: $c_{vm} = 3R \cong 25$ J/K·mol (Regel von Dulong-Petit) Metalle ~ ab 100 °C Keramiken ~ ab 1000 °C

Bei tiefen Temp.: $c_{vm} \sim T^3$

Bei 0 K: $c_{vm} = 0$ (3. Hauptsatz der Thermod.)

Funktionsmaterialien Prof. Dr. T. Jüstel

Molare Wärmekapazität

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

transversal

Im Festkörper: Gitterschwingungen (k = Wellenvektor, u = Auslenkung)

longitudinal

Debye-Theorie: Annahmen

- Atome führen gekoppelte Schwingungen aus (Phononen)
- Es liegt eine kontinuierliche Frequenzverteilung vor
- Maximale Wellenlänge ergibt sich aus den Abmessungen des Kristalls = 2 * Länge
- Minimale Wellenlänge ergibt sich aus dem Gitterabstand
- Für jede Wellenlänge existieren eine longitudinale und zwei transversale Moden, also 3N Moden bei N Atomen
- Jede Schwingungsmode hat die Energie E = hv
- Die Anregung in ein höheres Schwingungsniveau erfolgt gemäß der Boltzmann-Statistik, d.h. $\exp(-\Delta E/kT) = \exp(-h\Delta \nu/kT)$

Molare Wärmekapazität

Debye-Theorie: Ergebnisse

Bei tiefer Temperatur $T << \Theta_D$

$$c_{\rm vm} = \left(\frac{T}{\Theta_{\rm D}}\right)^3$$

Erklärung: Bei tiefen Temp. sind gemäß der Boltzmann-Statistik nur niederfrequente Schwingungen angeregt. Mit steigender Temp. werden auch höherfrequente Schwingungen angeregt.

Materialien mit schwachen Bindungen: niedrige Debye-Frequenz Materialien mit starken Bindungen: hohe Debye-Frequenz

Material	$\Theta_{\mathrm{D}}[\mathrm{K}]$
Ag	225
C (Diamant)	1800
Fe	465
Pb	94,5
NaCl	281
CaF ₂	474
FeS ₂	645

$$v = \frac{1}{2\pi} \cdot \sqrt{\frac{D}{m}}$$

D = Kraftkonstante

m = Masse

Bei hoher Temperatur $T > \Theta_D$

 $c_{vm} = 3R \cong 25 \text{ J/K·mol}$ (Regel von Dulong-Petit)

Erklärung: Alle 3 N Schwingungsmoden sind angeregt. Jede Schwingungsmode trägt mit k (1/2 k aus potentieller Energie und 1/2 k aus kinetischer Energie) zur Wärmekapazität bei.

Molare Wärmekapazität

Besonderheiten bei Festkörpern

Geringe Kompressibilität \rightarrow c_{pm} ~ c_{vm} (Anmerk.: Für Gase/Flüssigkeiten gilt c_{pm} - c_{vm} = R)

Metalle (mit Elektronengas)

Bei sehr tiefen Temperaturen tragen freie Elektronen signifikant zur Wärmekapazität bei, da $c_{\rm el} \sim T$

Bildung von Punktdefekten in Kristallen (z.B. Frenkel- oder Schottky-Defekte) führt zu einer Erhöhung der Wärmekapazität

Unordnung in amorphen Materialien, wie z.B. Gläsern, führt zu Änderungen in den Schwingungsspektren und damit zu Änderungen in der Wärmekapazität, vor allen bei Temperaturen < 50 K

Phasenübergange (strukturelle, magnetische) führen zu Anomalien in der Wärmekapazität in der Nähe der Phasenübergangstemperatur

Molare Wärmekapazität (Molwärme) und spezifische Wärme

Spezifische Wärme c = Molwärme/Molmasse [J/K·g]

Material	Spez. Wärme [J/K·g]	Material	Spez. Wärme [J/K·g]
Al	0,90	Al_2O_3	0,84
Cu	0,39	C (Diamant)	0,52
В	1,03	SiC	1,05
Fe	0,44	Si ₃ N ₄	0,71
Pb	0,16	SiO ₂ (Quarz)	1,11
Mg	1,02	Polyethylen hoher Dichte	1,84
Ni	0,44	Polyethylen geringe Dichte	2,30
Si	0,70	Polystyrol	1,17
Ti	0,53	Nylon-6,6	1,67
W	0,13	H ₂ O	4,18!
Zn	0,39	N_2	1,04

Funktionsmaterialien Prof. Dr. T. Jüstel

Wärmeübertragung

1. Wärmestrahlung

- Elektromagnetische Strahlung (Radio-/Mikrowellen, IR, VIS, UV → Planck-Strahlung)
- Wärmestrom Q in allen Phasen (s, l, g, p) und auch im Vakuum

$$\dot{Q} = \varepsilon \sigma A T^4$$

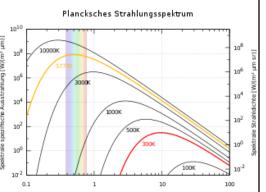
mit A = Fläche, ε = Emissionsgrad, σ = Stefan-Boltzmann-Konstante

 $dQ/dt \sim T^4$ (Stefan-Boltzmann-Gesetz: $P = \sigma \cdot A \cdot T^4$)

 $\lambda_{max} *T = 2880 \text{ K}\mu\text{m} \text{ (Wien's Verschiebungsgesetz)}$

2. Konvektion

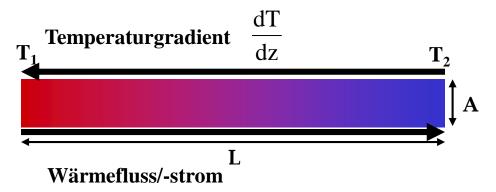
- **Transport von Teilchen**
- Wärmestrom in Flüssigkeiten und Gasen aber nicht im Festkörper oder Vakuum


$$\dot{\mathbf{Q}} = \alpha \mathbf{A} (\mathbf{T}_1 - \mathbf{T}_2)$$

 $|Q = \alpha A(T_1 - T_2)|$ mit A = Fläche, $\alpha = Wärmeübergangskoeffizient <math>[Wm^{-2}K^{-1}]$ (beschreibt die Strömungsverhältnisse am Körper)

3. Wärmeleitung

- Kein makroskopischer Materialfluss
- Wärmestrom in allen Phasen aber nicht im Vakuum


Funktionsmaterialien Prof. Dr. T. Jüstel

Wärmeleitung

Die Wärmeleitfähigkeit eines Festkörpers wird bestimmt durch

- Phononen = Elementare Anregungen (Quanten) des elastischen Feldes (Gitterschwing.)
- Freie Elektronen

$$\dot{Q} = \frac{\lambda A}{L} \cdot (T_1 - T_2)$$

 $\lambda = W$ ärmeleitfähigkeitskoeffizient [Wm⁻¹K⁻¹]

Nichtmetallische Festkörper (Keramiken)

- Phononen sind für die Wärmeleitung verantwortlich
- Wärmeleitfähigkeit nahezu perfekter Einkristalle ist deutlich höher als bei polykristallinen Verbindungen (Streuung von Phononen an Korngrenzen), bei Verbindungen mit vielen Defekten oder Verunreinigungen und bei Gläsern (Streuung von Phononen durch Unordnung)
- Häufig nimmt die Wärmeleitfähigkeit mit steigender Temperatur aufgrund der Zunahme von Defekten ab

Wärmeleitung

Metallische Festkörper

- Wärmeleitfähigkeit wird durch freie Elektronen bestimmt und ist dadurch deutlich höher als bei Nichtmetallen
- Wärmeleitfähigkeit ist in guter Näherung proportional zur elektrischen Leitfähigkeit: $\lambda = L \cdot \sigma \cdot T$ (Wiedemann-Franz-Gesetz) mit $L = 2,3 \cdot 10^{-8}$ J Ω /s·K² (Lorentzkonstante)

Halbleiter

- Wärmetransport durch Elektronen und Phononen
- Bei tiefen Temperaturen dominieren Phononen den Wärmetransport
- Mit steigender Temp. werden zunehmend Elektronen in das Leitungsband überführt, das zu einer deutlichen Erhöhung des Wärmeleitvermögens führt

Polymere

• Schlechte Wärmeleiter, da in der Regel keine freien Elektronen vorhanden sind und viel Energie in lokalen Bewegungen von Kettensegmenten gespeichert ist, so dass nur schwer Transport von Wärme stattfinden kann

Hohe thermische Leitfähigkeit ist für die Kühlung elektronischer Bauelemente bedeutend Licht- und Strahlungsquellen, (O)LEDs, Bildschirme, Mikroprozessoren, Widerstände, etc.

Funktionsmaterialien Prof. Dr. T. Jüstel

Wärmeleitfähigkeit λ [Js⁻¹m⁻¹K⁻¹] = [Wm⁻¹K⁻¹]

Material	Wärmeleitfähigkeit [Wm ⁻¹ K ⁻¹]	Material	Wärmeleitfähigkeit [Wm ⁻¹ K ⁻¹]
Al	238	Al ₂ O ₃	16
Cu	402	C (Diamant)	23
Fe	79	C (Graphit)	335
Mg	100	Lehm (Ofenbau)	0,27
Pb	35	SiC	88
Si	150	Si ₃ N ₄	14,6
Ti	22	Natriumkalkglas	0,96
W	172	Quarzglas	1,34
Zn	117	Vycorglas	1,26
Zr	23	ZrO ₂	5
Ag	428		
		Nylon-6,6	0,25
Cu-Ni(30%)	50	Polyethylen	0,33
Ferrit	75	Polyimid	0,21
Gelbmessing	222	Polystyrolschaum	0,03

Funktionsmaterialien Prof. Dr. T. Jüstel

Thermische Ausdehnung

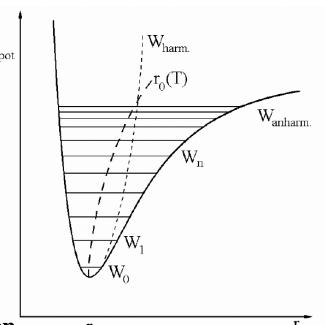
Linearer thermischer Ausdehnungskoeffizient α

Volumen-Ausdehnungskoeffizient $\gamma = 3\alpha$

Ursache für thermische Ausdehnung am Beispiel des zweiatomigen anharmonischen Oszillators beschrieben durch das sogenannte Morse-Potential

$$W_{pot} = D_e[1 - e^{-\alpha(r-r0)}]^2$$
 mit $D_e = Dissoziationsenergie$

 \rightarrow Vibrationszustände: E(ν) = (ν + ½)ħω - (ν + ½)χ_eħω


Der Gleichgewichtsabstand r_o steigt mit der Temperatur, da zunehmend höhere Schwingungsniveaus besetzt werden

$$\boxed{\alpha = \frac{1}{L_0} \cdot \left(\frac{\delta L}{\delta T}\right)_p} \quad \Delta L = \alpha \cdot L_0 \cdot \Delta T$$

$$\Delta \mathbf{L} = \alpha \cdot \mathbf{L}_0 \cdot \Delta \mathbf{T}$$

$$\gamma = \frac{1}{V_0} \cdot \left(\frac{\delta V}{\delta T}\right)_p \Delta V = \alpha \cdot V_0 \cdot \Delta T$$

$$\Delta V = \alpha \cdot V_0 \cdot \Delta T$$

Thermischer Ausdehnungskoeffizient unterschiedlicher Materialtypen

Keramiken

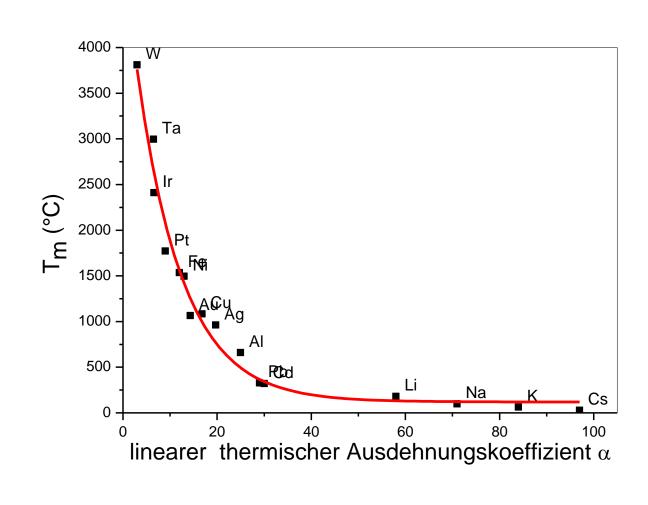
Niedriger Ausdehnungskoeffizienten aufgrund starker ionischer oder kovalenter Bindungen

Al₂O₃ $\alpha = 8.8 \text{ ppm/K}$ Quarzglas $\alpha = 0.5 \text{ ppm/K}$

Metalle

Hoher Ausdehnungskoeffizienten, da metallische Bindungen schwach im Vergleich zu kovalenten und ionischen Bindungen sind

Ag $\alpha = 19 \text{ ppm/K}$ Al $\alpha = 24 \text{ ppm/K}$


Polymere

Sehr hohe Ausdehnungskoeffizienten, da in der Regel nur schwache Bindungen (van-der-Waals, H-Brücken) zwischen den Polymerketten

Teflon $\alpha = 150 \text{ ppm/K}$ Nylon-6,6 $\alpha = 80 \text{ ppm/K}$

Thermischer Ausdehnungskoeffizient und Schmelzpunkt

Metall	$T_{m}[^{\circ}C]$	α [ppm/K
$\overline{\mathbf{W}}$	3 8 10	3,0
Ta	2996	6,5
Ir	2410	6,6
Pt	1772	9,0
Fe	1535	12,0
Ni	1495	13,0
Au	1064	14,3
Cu	1083	16,8
Ag	962	19,7
Al	660	25
Pb	327	29
Cd	321	30
Li	180	58
Na	98	71
K	64	84
Ga	30	18!
Cs	29	97

Funktionsmaterialien Prof. Dr. T. Jüstel

Thermischer Ausdehnungskoeffizient - Materialwissenschaftliche Herausforderung

Verbundwerkstoffe

Ausdehnungskoeffizienten der unterschiedlichen Komponenten müssen so aufeinander abgestimmt sein, dass der Werkstoff bei einer Temperaturänderung nicht reißt

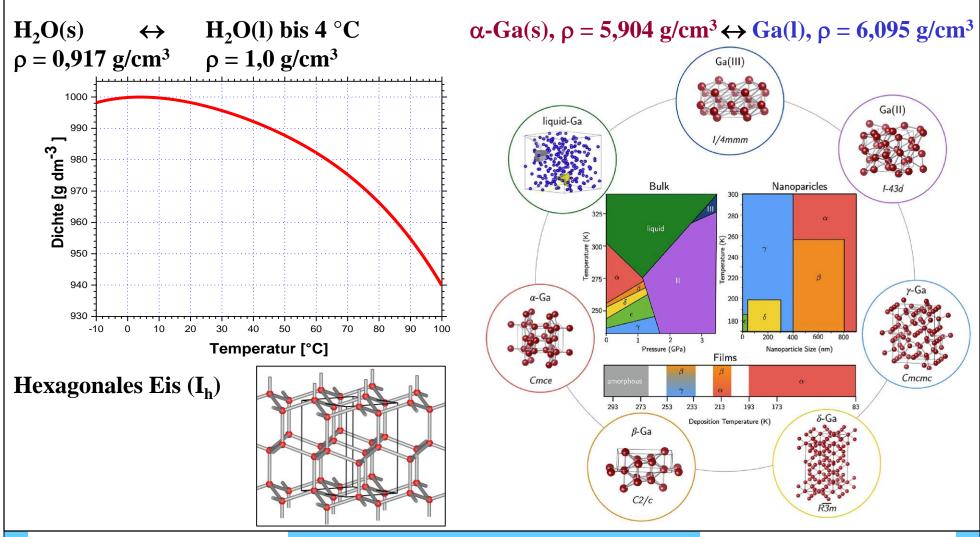
Entwicklung von Materialien mit extrem niedrigen Ausdehnungskoeffizienten

Beispiel: Zerodur von Schott Glaskeramik auf der Basis von Li₂O·Al₂O₃·SiO₂ (Zerodur): Glas hat einen positiven Ausdehnungskoeffizienten, Kristalle haben einen negativen Ausdehnungskoeffizienten $\Rightarrow \alpha(\text{Zerodur}) = 0.02 \text{ ppm/K}$

Bild: Fa. Schott, Mainz

Beispiele für Substanzen mit negativer thermischer Ausdehnung

- $H_2O(s) \leftrightarrow H_2O(l) \ 0-4 \ ^{\circ}C$
- Gallium Ga ($T_m = 29.78$ °C, $T_h = 2403$ °C)


Anwendung: Cerankochfelder

- Silicium Si
- **Einige Zeolithe**
- **Einige Wolframate und Molybdate**

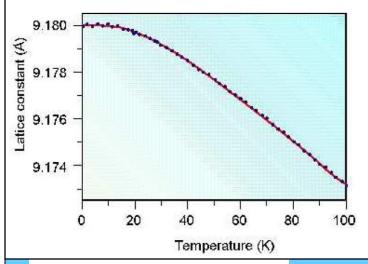
Funktionsmaterialien Prof. Dr. T. Jüstel

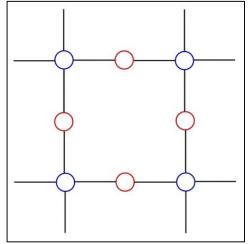
2.2 Thermische Eigenschaften

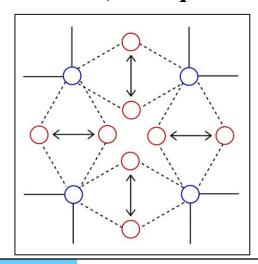
Thermischer Ausdehnungskoeffizient - Materialwissenschaftliche Herausforderung

Funktionsmaterialien Prof. Dr. T. Jüstel

2.2 Thermische Eigenschaften

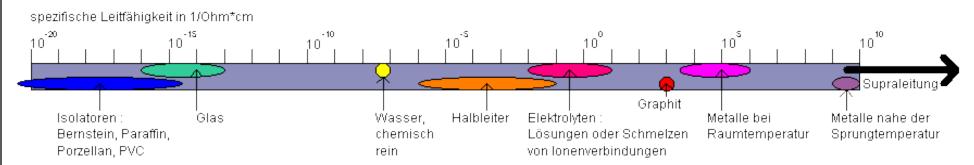

Negative thermische Ausdehnung tritt in Kristallen mit sehr offenen Strukturen auf


Ursache


Kooperative Schwingungsmoden bzw. Librationsbewegungen benachbarter Polyeder

Beispiel: ZrW₂O₈ von Arthur W. Sleight 1998 entdeckt (Inorg. Chem. 37 (1998) 2854)

- negative thermische Ausdehnung von T = 0 K bis zur Zersetzung bei 1050 K
- Librationsbewegung der ZrO₆-Oktaeder und WO₄-Tetraeder
- Libration überkompensiert normale thermische Ausdehnung
- Zahlreiche technische Anwendungen, z. B. Elektronik, Optik, Brennstoffzellen, Sauerstoff-Sensoren, Schock-Absorber, Thermostate, Zahnersatz, Lichtquellen



Funktionsmaterialien Prof. Dr. T. Jüstel

Bedeutung

- 1. Minimierung der thermischen Verlustleistung bei Hochspannungsleitungen
 - ⇒ möglichst hohe elektrische Leitfähigkeit der Kabelwerkstoffe (Cu, Al)
- 2. Vermeidung von elektrischen Durchschlägen oder Bildung von Lichtbögen
 - ⇒ möglichst niedrige elektrische Leitfähigkeit der Isolationswerkstoffe

- 3. Erhöhung des Wirkungsgrades von Solarzellen für eine regenerative Energieversorgung ⇒ möglichst hoher Wirkungsgrad für die Erzeugung von Elektronen/Loch-Paaren und deren Trennung
- 4. Miniaturisierung in der Elektronik
 - ⇒ gezielte Einstellung der elektrischen Leitfähigkeit
 - **⇒** Entwicklung optoelektronischer Bauelemente (Elektronik → Photonik)

Das Ohm'sche Gesetz und die elektrische Leitfähigkeit

Ohm'sches Gesetz

$$\mathbf{R} = \mathbf{U}/\mathbf{I}$$

 $\mathbf{R} = \mathbf{Widerstand} [\Omega]$

U = **Spannung** [**V**]

I = Stromstärke [A]

 ρ = spezifischer Widerstand [Ω ·m]

 $A = Querschnittsfläche [m^2]$

l = Länge des Leiters [m]

P = Leistung [W]

 σ = spezifische Leitfähigkeit [Ω ⁻¹·m⁻¹]

• Abmessungen des Leiters

$$R = \rho \cdot \frac{1}{A} = \frac{1}{\sigma} \cdot \frac{1}{A}$$

Aus obiger Gleichung ergibt sich, dass man die Abmessungen von Widerständen an die Vorgaben für den jeweiligen Anwendungsfall anpassen kann. Außerdem sollte die thermische Verlustleistung möglichst klein sein, um Energieverluste und unzulässige Erwärmung des Leiters zu vermeiden.

Thermische Verlustleistung

$$\mathbf{P} = \mathbf{U} \cdot \mathbf{I} = \mathbf{I}^2 \cdot \mathbf{R}$$

Spezifischer Widerstand und spezifische Leitfähigkeit

reine Materialeigenschaften

Art der Ladungsträger

- Elektronen
- **Ionen (Kationen > Anionen)**

Die spezifische Leitfähigkeit bzw. der spezifische Widerstand eines Materials hängt von der Ladung, der Anzahldichte und der Beweglichkeit der Ladungsträger ab.

$$\sigma = \sum \mathbf{N}_{\mathbf{V},\mathbf{i}} \cdot \mathbf{q}_{\mathbf{i}} \cdot \mathbf{\mu}_{\mathbf{i}}$$

 N_V = Anzahl der Ladungsträger pro Volumeneinheit [m⁻³] q = Ladung der Ladungsträger [C]

 μ = elektrische Beweglichkeit [m²·V⁻¹·s⁻¹]

i = Ladungsträgerspezies

Leitungsvorgänge in

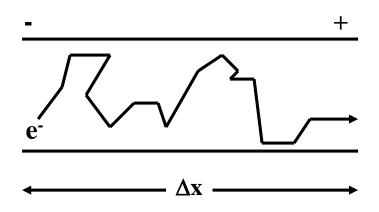
Anzahl der Ladungsträger entscheidend ~ e^{-E}G/kT Halbleitern und Isolatoren

Metallen Beweglichkeit der Ladungsträger entscheidend ~ 1/T

Definition der elektrischen Beweglichkeit µ

⇒ Die elektrische Beweglichkeit μ ist die Driftgeschwindigkeit der Ladungsträger bezogen auf die angelegte elektrische Feldstärke

$$\mu = v/E$$


v = Driftgeschwindigkeit [m/s]

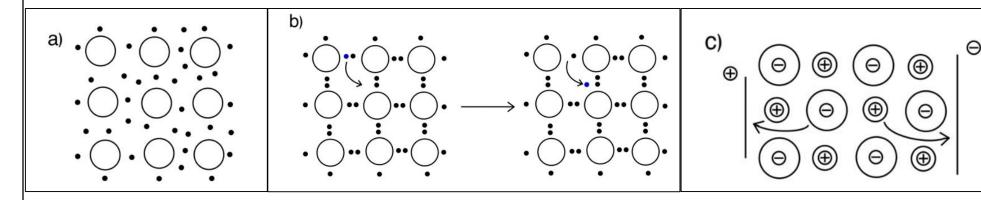
E = elektrische Feldstärke [V/m]

Stromdichte j

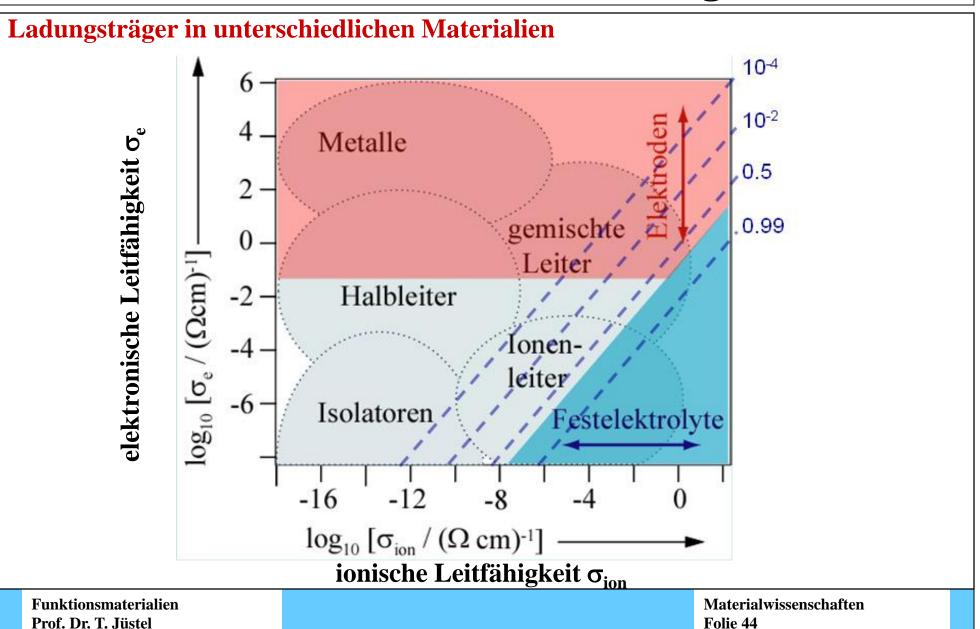
 $\mathbf{j} = \mathbf{N} \cdot \mathbf{q} \cdot \mathbf{\mu} \cdot \mathbf{E} = \mathbf{\sigma} \cdot \mathbf{E}$

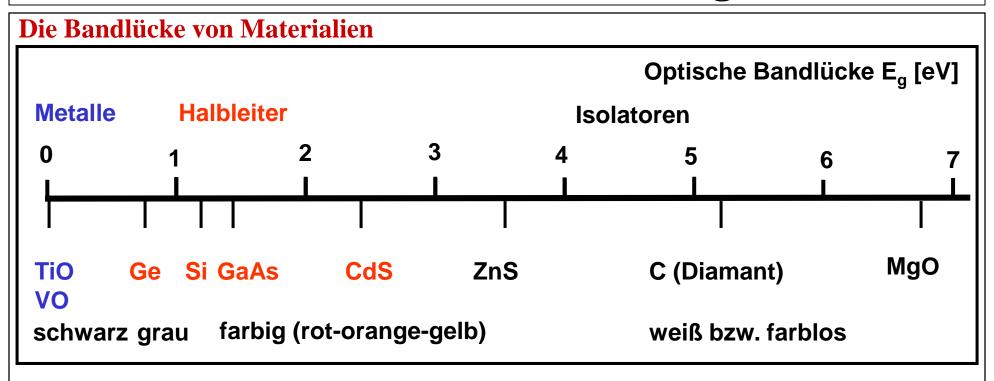
Die Driftgeschwindigkeit $v = \Delta x/\Delta t$ ist die mittlere Geschwindigkeit der Ladungsträger in Feldrichtung

Zufällige Bewegungen eines Ladungsträgers in einem Leiter infolge von Streuung an Atomen und Gitterstörungen (Verunreinigungen)


Ladungsträger in unterschiedlichen Materialien

a) Metalle leichtbewegliche Valenzelektronen


b) Halbmetalle/Isolatoren durch Bruch kovalenter Bindungen


Promotion von Elektronen aus dem VB ins LB

c) Ionische Festkörper Diffusion von Ionen

Leitfähigkeit: durch das Material selbst (Volumen, "Bulk") aufgrund von Grenzflächeneffekten (Oberfläche, "Interface")

Metalle bzw. Metallpulver sind schwarz und undurchsichtig, weil sichtbares Licht jeder Wellenlänge absorbiert wird Halbleiter sind farbig, weil Licht mit bestimmter Farbe bzw. Energie absorbiert wird (die Valenzelektronen werden über die Bandlücke angeregt) In Isolatoren ist die Bandlücke so gross, dass sichtbares Licht die Elektronen nicht anregen kann. Isolatoren sind meist farblos bzw. transparent

Funktionsmaterialien Prof. Dr. T. Jüstel

Spezifische elektronische Leitfähigkeit ausgewählter Materialien

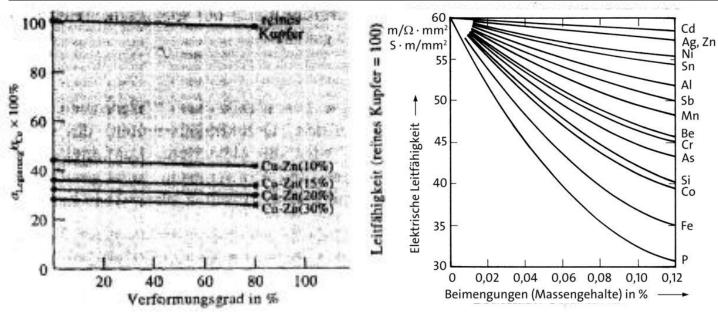
Material	Elektronenkonfiguration	spezifische Leitfähigkeit [Ω ^{-1.} m ⁻¹]
Na	[Ne]3s ¹	2,13·10 ⁵
K	[Ar]4s ¹	1,64·10 ⁵
Mg	[Ne]3s ²	2,25·10 ⁵
Ca	[Ar]4s ²	3,16·10 ⁵
Al	[Ne]3s ² 3p ¹	3,77·10 ⁵
Ga	$[Ar]4s^23d^{10}4p^1$	0,66·10 ⁵
Fe	[Ar]4s ² 3d ⁶	1,00·10 ⁵
Ni	[Ar]4s ² 3d ⁸	1,46·10 ⁵
Cu	$[Ar]4s^{1}3d^{10}$	5,98·10 ⁵
Ag	[Kr]5s ¹ 4d ¹⁰	6,80·10 ⁵
Au	$[Xe]6s^15d^{10}$	4,26·10 ⁵
C _{kubisch} (Diamant)	[He]2s ² 2p ²	< 1.10-18
Si	[Ne]3s ² 3p ²	5,0·10-6
Ge	$[Ar]4s^24p^2$	0,02
Sn	$[Kr]5s^25p^2$	0,9·10 ⁵
Polyethylen	-	1·10·15
Polytetrafluorethylen	-	1·10·18
Al_2O_3	[Ne] und [Ne]	1·10·14
SiO ₂ (Quarzglas)	[Ne] und [Ne]	1·10·17

Funktionsmaterialien Prof. Dr. T. Jüstel

Methoden zur Einstellung der elektronischen Leitfähigkeit

In reinen, defektfreien Metallen wird die Leitfähigkeit nur durch die Beweglichkeit der Ladungsträger bestimmt:

- Beweglichkeit ist proportional zur Driftgeschwindigkeit
- Diese hängt von der mittleren freien Weglänge ab
- Je größer die mittlere freie Weglänge ist, desto höher ist die Beweglichkeit und damit die elektrische Leitfähigkeit
- Die mittlere freie Weglänge ist die Strecke, welche die Elektronen durchschnittlich zwischen zwei Stößen zurücklegen \Rightarrow temperaturabhängiger Widerstand ρ_T


<u>Einfluss von Gitterstörungen (Leerstellen, Versetzungen, Korngrenzen, Fremdatome)</u>

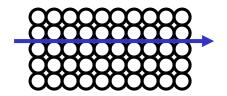
- Durch Elektronenstreuung an Gitterstörungen verringert sich die Beweglichkeit und damit die Leitfähigkeit
- Streuung an Gitterstörungen liefert temperaturunabhängigen Beitrag zum Widerstand $\rho_d = b \cdot (1-x) \cdot x$ mit x = 0,0-1,0 = relativer Anteil an Fremdatomen
- Der Gesamtwiderstand ρ ergibt sich aus dem temperaturabhängigen Widerstand und dem Widerstand durch Gitterstörungen

$$\rho = \rho_d + \rho_T$$

Methoden zur Einstellung der elektronischen Leitfähigkeit

Einfluss von Bearbeitung und Härtung am Beispiel Kupfer und Messing

Lit.: a) D.R. Askeland Materialwissenschaften Spektrum-Verlag 1996 b) Wikipedia

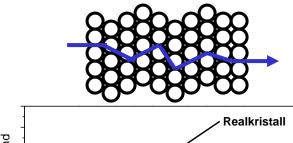

Mischkristallbildung & Kaltverformung Einfluss von Fremdelementen

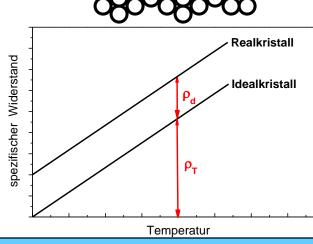
- Kaltverformung ist eine effektive Methode zur Härtung, bei der sich die elektrischen Eigenschaften nur unwesentlich ändern
- Glühen führt zur Verringerung der Defektdichte und damit zu einer Erhöhung der elektrischen Leitfähigkeit (Bsp.: Durch Glühen bzw. Tempern von Cu)

Einfluss der Temperatur (Metalle)

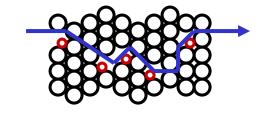
In Metallen ist eine hohe Ladungsträgerdichte vorhanden, die nicht von der Temperatur abhängt. Die unter der Wirkung einer anliegenden Spannung beschleunigte Bewegung der Leitungselektronen wird durch Stöße mit dem durch thermische Anregung schwingenden Gitter abgebremst.

Idealkristall (im Ruhezustand)


$$\rho_{\rm T} = \rho_{\rm r} \cdot (1 + \alpha \Delta T)$$


$$\rho = \rho_d + \rho_T$$

$$\Rightarrow \rho = \rho_d + \rho_r \cdot (1 + \alpha \Delta T)$$


Elektronenbewegung im

Idealkristall (thermisch angeregt)

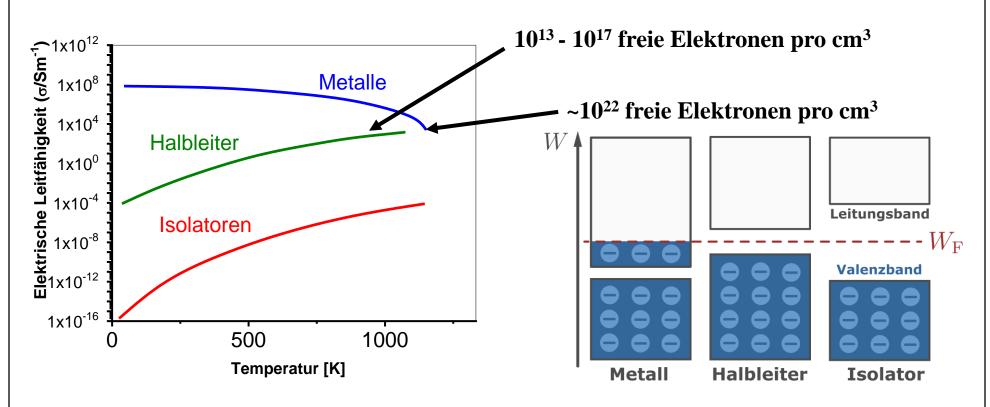
Realkristall (thermisch angeregt)

 $mit \ \alpha = Temperaturkoeffizient \\ [\Omega cm/K]$

 ρ_T = Temperaturabhängig. Widerstand

 $\rho_d = Defektabhängiger$ Widerstand

Funktionsmaterialien Prof. Dr. T. Jüstel


Einfluss der Temperatur (Metalle)

Beweglichkeit und elektrische Leitfähigkeit werden durch Streuprozesse vermindert, wobei der Widerstand annähernd linear mit der Temperatur ansteigt (→ Mathiesen-Regel)

Metall	Spezifischer Widerstand ρ_r bei RT [10-6 Ω cm]	Temperaturkoeffizient α [K ⁻¹]
Be	4,0	0,0250
Mg	4,45	0,0165
Ca	3,91	0,0042
Al	2,65	0,0043
Cr	12,90	0,0030
Fe	9,71	0,0065
Co	6,24	0,0060
Ni	6,84	0,0069
Cu	1,67	0,0068
Ag	1,59	0,0041

Funktionsmaterialien Prof. Dr. T. Jüstel

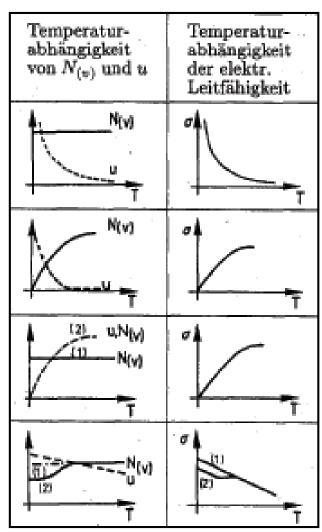
Einfluss der Temperatur (Metalle - Halbleiter - Isolatoren)

Metalle: Die elektronische Leitfähigkeit nimmt mit der Temperatur allmählich ab

Hableiter und Isolatoren: Die elektronische Leitfähigkeit nimmt mit der Temperatur zu

Funktionsmaterialien Prof. Dr. T. Jüstel

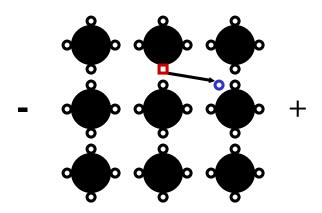
Einfluss der Temperatur auf verschiedene Typen elektronische Leiter

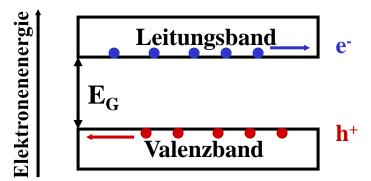

Typ Ladungsträgerdichte N_V Beweglichkeit μ

Metalle konstant ~T⁻¹

Eigenhalbleiter $\sim \exp(-\Delta E/kT)$ $\sim T^{-3/2}$

Festelektrolyte konst. (1) $\sim \exp(-\Delta E/kT)$ (2) $\sim \exp(-\Delta E/kT)$


Flüssigelektrolyte konst. (1) $\sim \alpha_T$ (2) abnehmend



Funktionsmaterialien Prof. Dr. T. Jüstel

Einfluss der Temperatur (Eigenhalbleiter)

Für Leitfähigkeit in Eigenhalbleiter bzw. intrinsischen Halbleitern müssen Elektronen vom Valenzband ins Leitungsband angehoben werden

- Die Anzahl von Elektronen und Löchern ist in intrinsischen Halbleitern gleich groß
 - ⇒ Bildung von Elektron-Loch-Paaren
 - \Rightarrow $N_V = N_{V,e} = N_{V,h}$
- Die Anzahl von Elektronen-Loch-Paaren bestimmt die spezifische Leitfähigkeit

$$\Rightarrow \quad \sigma = N_{V,e} \cdot q \cdot \mu_e + N_{V,h} \cdot q \cdot \mu_h$$

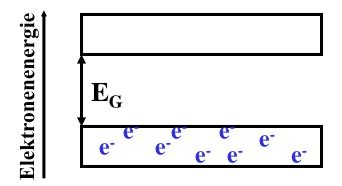
 $\mu_e = Beweglichkeit \ der \ Elektronen$

 $\mu_h = Beweglichkeit der Löcher$

$$\Rightarrow \sigma = N_V \cdot q \cdot (\mu_e + \mu_h)$$

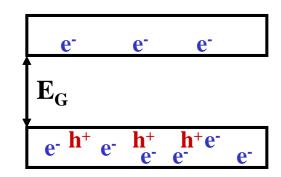
Einfluss der Temperatur (Eigenhalbleiter)

Die Anzahl der Elektronen-Loch-Paare N_V (Excitonen) ist stark temperaturabhängig!


T = 0 K

⇒ Alle Elektronen im Valenzband

⇒ Mit steigender Temperatur wächst die Wahrscheinlichkeit für den Übergang eines Elektrons vom Valenz- ins Leitungsband

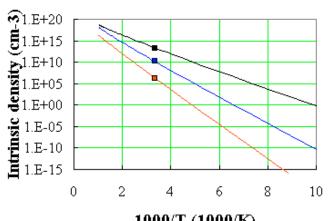

$$N_V = 0$$

$$N_V = N_{V,e} = N_{V,h} = N_{V,\infty} \cdot \exp(-E_G/2kT)$$

(k = 1,38·10⁻²³ J/K)

Leitungsband

Valenzband


Elektronenenergie

Einfluss der Temperatur (Eigenhalbleiter)

Die elektrische Leitfähigkeit σ eines Eigenhalbleiters lautet:

$$\sigma = N_{V} \cdot q \cdot (\mu_{e} + \mu_{h}) \text{ und } N_{V} = N_{V,e} = N_{V,h} = N_{V,\infty} \cdot \exp(-E_{G}/2kT)$$

$$\sigma = q \cdot (\mu_e + \mu_h) \cdot N_{V,\infty} \cdot \exp(-E_G/2kT)$$

1000/T (1000/K)

Material	Elektronenbeweglichkeit [cm²/V·s]	Löcherbeweglichkeit [cm²/V·s]
Csp ³	1800	1400
Si	1900	500
Ge	3800	1820
Sn	2500	2400
GaP	300	100
GaAs	8800	400

- Die Beweglichkeiten der Elektronen und Löcher sind proportional zu T^{-3/2}, fallen also mit der Temperatur
- Die Temperaturabhängigkeit der Anzahldichte N dominiert jedoch Eigenhalbleiter so stark, dass insgesamt die Leitfähigkeit mit der Temperatur steigt

Funktionsmaterialien Prof. Dr. T. Jüstel

Die Größe der Bandlücke E_G hängt von der chemischen Zusammensetzung, von der Elektronegativitätsdifferenz, vom Strukturtyp und von der Temperatur ab

Substanz	Strukturtyp	Band	llücke E _G [eV]	bei RT			ΔEN
MgF_2	Rutil	12,0	<u> </u>				2,9
CaF ₂	Fluorit	11,8					3,1
MgO	Kochsalz	7,8	N -	N ·ovn(F /21/T)		2,3
AIN	Wurtzit	6,2		N _{V,∞} ·exp(\ /	1,4
Csp ³	Diamant	5,3	Temperatur	AKTIVI 1	erungsene 2	ergie ev 8	0,0
GaN	Wurtzit	3,5	[°C]	2·10-7	3.10-14	1.10-54	1,2
AlP	Zinkblende	3,0		6.10-4	3·10-7	8·10 ⁻²⁷	0,6
ZnSe	Zinkblende	2,3	500				0,9
GaP	Zinkblende	2,2	1000	1.10-2	1.10-5	1.10-16	0,4
GaAs	Zinkblende	1,43	1500	4.10-2	1.10-4	4-10-12	0,4
Si (kristallin)	Diamant	1,11	2000	8·10 ⁻²	6·10 ⁻³	1·10 ⁻⁹	0,0
Ge	Diamant	0,67					0,0
InSb	Zinkblende	0,18					0,2
α-Sn (grau)	Diamant	0,08					0,0
Funktionsmaterialier	1				Material	wissenschaften	i

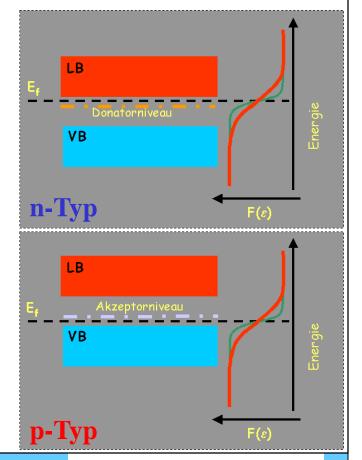
Folie 56

Prof. Dr. T. Jüstel

Dotierte Halbleiter: Störstellenhalbleiter = Eigenhalbleiter + Dotierungen

- In dotierten Halbleitern (Störstellenhalbleitern) werden Fremdatome (Dotierungen) zugesetzt
- Die Art der Fremdatome bestimmt den Leitungstyp, die Anzahl der Fremdatome bestimmt die Leitfähigkeit

Man unterscheidet

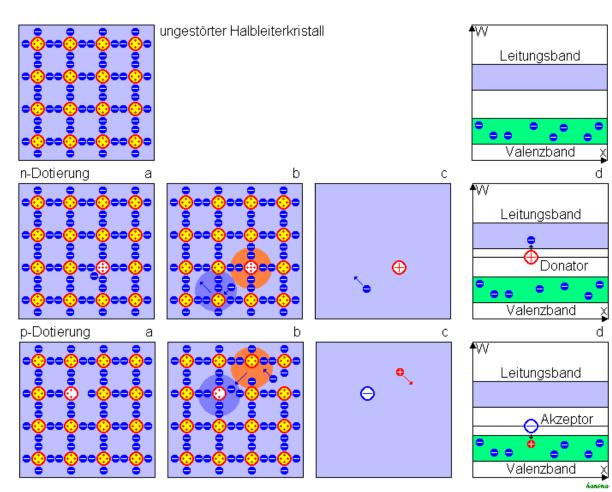

n-Halbleiter: Zusatz höherwertiger Elemente

(Elektronenleitung überwiegt: n-(negativ)-Halbleiter)

und

p-Halbleiter: Zusatz niederwertiger Elemente

(Löcherleitung überwiegt: p-(positiv)-Halbleiter)



Störstellenhalbleiter = Eigenhalbleiter + Dotierungen

Beispiel: Dotierung von Silicium Durch Dotierung von hochreinem Silicium ($\sigma = 5.10^{-6} \, \Omega^{-1} \text{cm}^{-1}$) lässt sich dessen Leitfähigkeit erhöhen

n-Si Donatoren: P, As, Sb "Elektronenleiter" 1 ppm P $\Rightarrow \sigma = 10 \Omega^{-1} \text{cm}^{-1}$

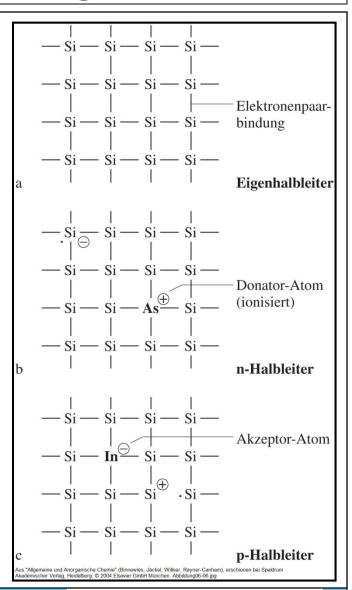
p-Si Akzeptoren: B, Al, Ga, In "Lochleiter" 1 ppm B $\Rightarrow \sigma = 4 \Omega^{-1} \text{cm}^{-1}$

Typische Konzentration der Dotierungen: 10^{21} m⁻³ (Gitteratome ~ 10^{28} m⁻³) \Rightarrow ~ $10^{-5}\%$

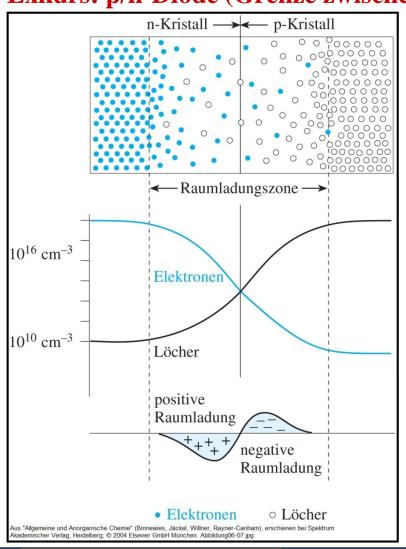
Funktionsmaterialien Prof. Dr. T. Jüstel

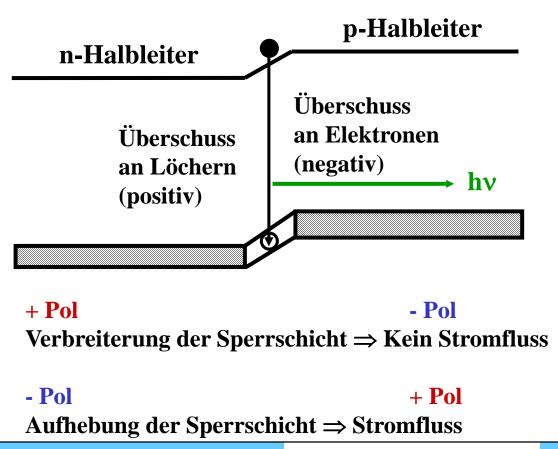
Siliziumbasierte Halbleitermaterialien

n-Halbleiter	Elektronenuberschuss		
P. As. Sh	5 Außenelektronen		


Si 4 Außenelektronen

|--|


B, Al, Ga, In 3 Außenelektronen


Si 4 Außenelektronen

	S	Si	Ge		
Dopand	E _d [eV]	E _a [eV]	E _d [eV]	E _a [eV]	
P	0,045		0,0120		
As	0,049		0,0127		
Sb	0,039		0,0096		
В		0,045		0,0104	
Al		0,057		0,0102	
Ga		0,065		0,0108	
In		0,160		0,0112	

Exkurs: p/n-Diode (Grenze zwischen einem n- und p-dotierten Halbleiterkristall)

Funktionsmaterialien Prof. Dr. T. Jüstel

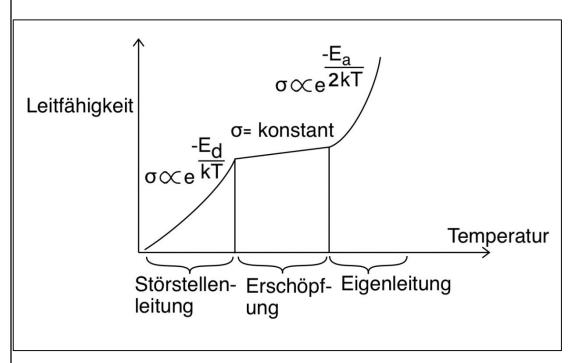
Einfluss der Temperatur (dotierte Halbleiter)

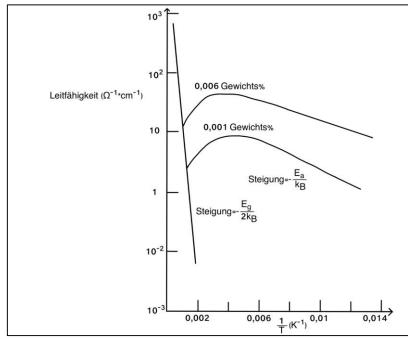
Neben Störstellenleitung, d.h. des Donators, ist auch Eigenleitung vorhanden

Die Gesamtanzahldichte der Ladungsträger beträgt:

$$\begin{array}{lll} N_{V,ges} = & N_{V,e,Donator} & + & N_{V,e,intrinisch} + N_{V,h,intrinsisch} & \text{f\"{u}r n-Halbleiter} \\ N_{V,ges} = & N_{V,h,Akzeptor} & + & N_{V,e,intrinisch} + N_{V,h,intrinsisch} & \text{f\"{u}r p-Halbleiter} \\ & & Beitrag \ der \\ & & Dotierung & Eigenleitung \end{array}$$

$$N_{V,ges} = N_{V,\infty,Donator} \cdot exp(-E_d/kT) + 2N_{V,\infty,intrinsisch} \cdot exp(-E_G/2kT)$$

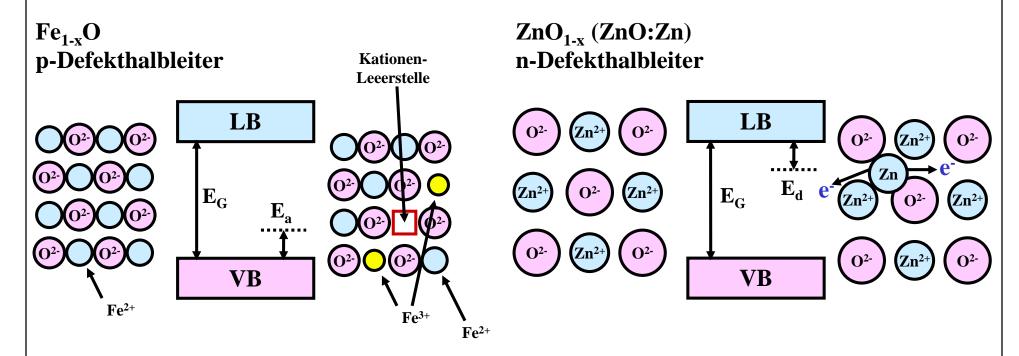

- Bei tiefen Temperaturen ist die Eigenleitung vernachlässigbar, bei hohen Temperaturen dominiert sie dagegen
- Dazwischen existiert ein Plateaubereich, in dem die Leitfähigkeit temperaturunabhängig ist (Donator-Erschöpfung)


Einfluss der Temperatur (dotierte Halbleiter)

Am Beispiel von Si:P (n-Halbleiter)

Lineare Auftragung (σ über T)

Arrhenius Auftragung (lnσ über 1/T)



Lit.: D.R. Askeland, Materialwissenschaften, Spektrum-Verlag 1996

Einfluss der Temperatur (Defekthalbleiter)

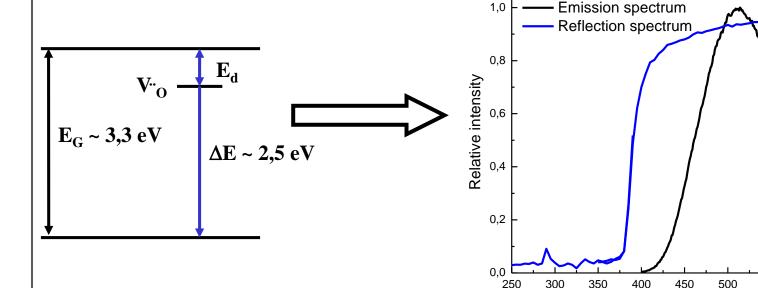
Defekthalbleiter oder nichtstöchiometrische Halbleiter sind ionische Verbindungen, die entweder einen Überschuss an Anionen (p-Leitung) oder Kationen (n-Leitung) enthalten

- Kommt bei Verbindungen vor, in denen das Kation zum Valenzwechsel neigt!
- Defekte führen bei optischen Materialien (Leuchtstoffen, Pigmenten) zur Vergrauung

Defekthalbleiter zeigen Lumineszenz

Beispiel: ZnO:Zn,V₀

ZnO


 $Zn^{x}_{Zn} + O^{x}_{O} \rightarrow Zn^{x}_{i} + 0.5 O_{2}$

sowie

ZnO $Zn^{x}_{Zn} + O^{x}_{O} \rightarrow Zn^{x}_{Zn} + V^{n}_{O} + 0.5 O_{2}$

Emissions- und Reflexionsspektrum

Sauerstoffdefekte = Donatoren, n-Halbleiter

⇒ Anwendung als Elektrolumineszenzleuchtstoff

Funktionsmaterialien Prof. Dr. T. Jüstel

Materialwissenschaften Folie 64

600

650

700

550

Wavelength [nm]

100

80

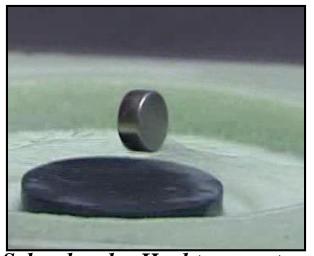
20

750

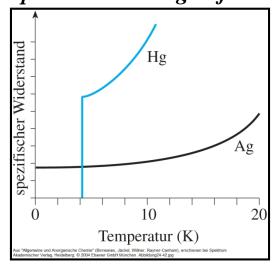
Einfluss der Temperatur: Supraleiter

Definition

Supraleiter sind Materialien, die beim Unterschreiten einer bestimmten Temperatur (Sprungtemperatur) ihren elektrischen Widerstand verlieren und unterkritische Magnetfelder aus ihrem Inneren verdrängen (Meißner-Ochsenfeld-Effekt)


⇒ Bisher bei mehr als 10000 Materialien beobachtet

Normaler Leiter

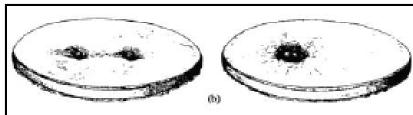

Streuung der Elektronen an Defekten und Wechselwirkung mit Gitterschwingungen (Elektron-Phonon-Streuung) ⇒ Fermionen

Supraleiter

Paarweise Kopplung von Leitungselektronen durch Elektron-Phonon-Wechselwirkung ⇒ Bosonen (Spin: 0, 1ħ, 2ħ)

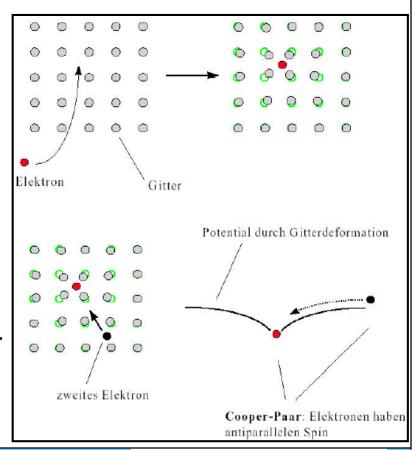
Schwebender Hochtemperatursupraleiter im Magnetfeld

Geschichte der Supraleiterforschung


<u>Jahr</u>	Material	T _c [K]	Autor/Literatur	0 26
1911	Hg	4,2	H.K. Onnes	M Section
1930	Nb	9,3		
1933	Meißner-Ochsenfeld-Effek	t	W. Meißner, R. Ochsenfeld	
1950	Nb ₃ Sn	18,1		
1957	BCS-Theorie		Bardeen, Cooper, Schrieffer	1, 1, 1, 1, 1, 2)
1972	Nb ₃ Ge	23,3		Heike Kamerlingh
1986	La _{1.8} Ba _{0.2} CuO ₄	35	J.G. Bednorz, K.A. Müller	Onnes 1911
1987	YBa ₂ Cu ₃ O _{7-x}	93		
1988	$Bi_2Sr_2Ca_{n-1}Cu_nO_x$	125		are the second
1988	$Tl_2Ba_2Ca_2Cu_3O_{10}$	127		and the second
1993	$HgBa_2Ca_2Cu_3O_{8+x}$	135		and the same
1995	Druckanwendung	164		SSE SEE
2019	LaH ₁₀ bei 170 GPa	250	M.I. Eremets, Nature 569 (20	019) 528
2023	LuH ₂ :N bei 1 MPa	294	R.P. Dias, Nature 615 (2023)	244

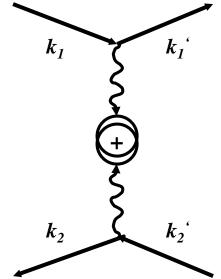
Heute bekannte Supraleiter: Metalle, Legierungen, Cuprate, org. Verbindungen, Fullerene

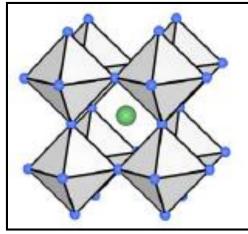
BCS-Theorie: Cooper-Paare


<u>Unterhalb von T_c bilden Elektronen mit antiparallen Spin Cooper-Paare</u>

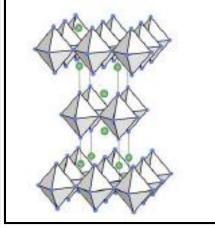
Ein Elektron erzeugt durch seine Ladung in seiner Umgebung eine elastische Verzerrung des Gitters, d.h. der Atomrümpfe. Bewegt sich ein Elektron durch das Gitter, wandert diese Verformung mit. In Cooper-Paaren gibt es nun ein 2. Elektron, das durch diese Gitterverformung an das 1. gekoppelt ist.

e⁻-Abstand: 0,1 – 1 μm!


Cooper-Paare können nur bei kleinen Temperaturen existieren. Bei hohen Temperaturen wird die Wechselwirkung zwischen den gekoppelten Elektronen aufgehoben, die Elektronen verhalten sich metallisch.

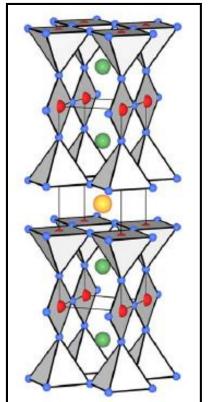


Hochtemperatursupraleiter

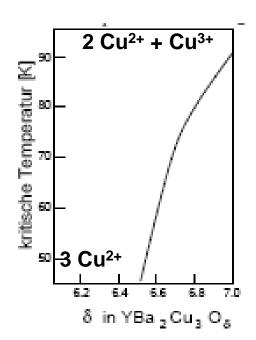

Bedingungen

- Starke Kopplung der Elektronenbewegung an die Gitterschwingungen
- ⇒ HT-Supraleiter sollten bei RT schlechte Leiter sein (keramische Verbindungen)
- ⇒ Gute metallische Leiter (Cu, Ag) gehen nicht in den supraleitenden Zustand über
- Leichte elektrische Polarisation bestimmter Gitterbausteine
- ⇒ Kleine Kationen mit hoher Koordinationszahl

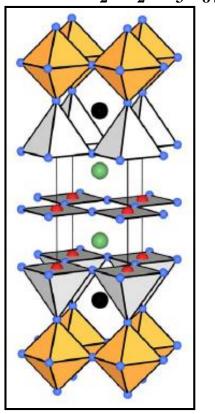
CaTiO₃ (Perovskit)



 $La_{2}CuO_{4}\left(K_{2}NiF_{4}\text{-}Typ\right)\\ La_{1.8}Sr_{0.2}CuO_{4}$


La₂CuO₄ ist antiferromagnetisch und nicht-Leitend, da Cu²⁺ ([Ar]d⁹) Superaustausch zeigt La_{1,8}Sr_{0,2}CuO₄ ist gemischtvalent (Cu²⁺/³⁺), wodurch der Antiferromagnetismus und damit die Kopplung der Elektronen aufgehoben wird.

Hochtemperatursupraleiter

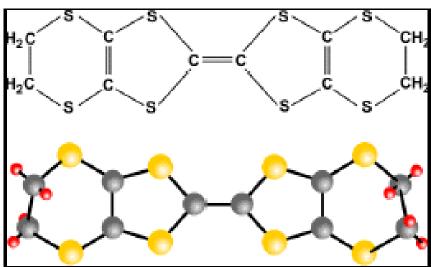

Struktur von YBa₂Cu₃O_{7-x}

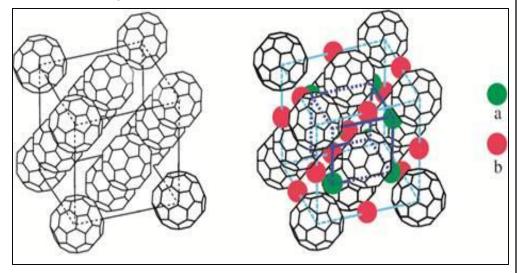
 $Einfluss\ des \\ Sauerstoffgehaltes\ \delta\ auf \\ die\ Sprungtemperatur$

Struktur von TlBa₂Ca₂Cu₃O_{8+x}

CuO₂-Schichten vermitteln die Supraleitung, Y³⁺-Kationen wirken als "Spacer"

Organische Hochtemperatursupraleiter

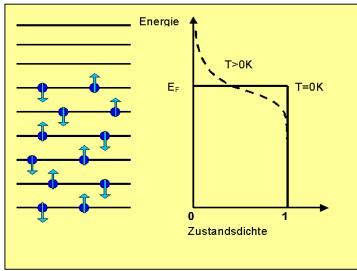

Organische Verbindungen, wie z.B. Polymere, sind normalerweise Isolatoren.


Auch hier ist Cooper-Paar Bildung möglich (W.A. Little)

- Theoretisch T_{Sprung} bis zu 300 K
- Großes Potential durch die Vielfalt der Synthesemöglichkeiten

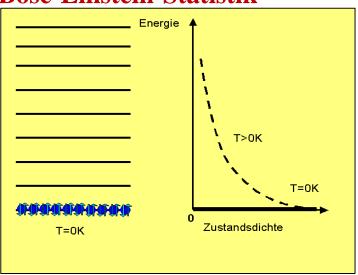
 \Rightarrow Fulleridsupraleiter: K_3C_{60} : $T_c = 19$ K, Rb_3C_{60} : $T_c = 27$ K, Cs_3C_{60} : $T_c = 40$ K

 \Rightarrow Komplexsupraleiter: (BEDT-TTF)₂Cu(NCS)₂: $T_c = 11 \text{ K}$



Bisethylendithiotetrathiafulvalen (BEDT-TTF)

C₆₀ Fulleren


Fermi-Dirac-Statistik

Fermionen sind Teilchen mit halbzähligem Spin, z.B. Elektronen, Protonen, Neutronen, Neutrinos, Quarks

Das Pauli-Verbot besagt, dass jeder Energiezustand nur mit zwei Elektronen entgegengesetzten Spins besetzt werden kann

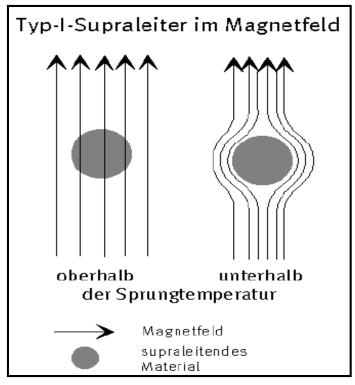
Bose-Einstein-Statistik

Bosonen sind Teilchen mit ganzzahligen Spin, z.B. Photonen, Deuteriumkerne, Bosonen, Gluonen, Gravitonen (hypothetisch)

Cooper-Paare bilden sich aus Elektronen mit entgegengesetzten Spins, d.h. der Gesamtspin ist Null. Cooper-Paare sind also Bosonen. Das Pauli-Verbot gilt nicht mehr. Alle Cooper-Paare dürfen den gleichen Quantenzustand mit gleicher Energie einnehmen

Der Meißner-Ochsenfeld-Effekt

Walther Meißner und Robert Ochsenfeld 1933


Ein externes Magnetfeld wird aus dem Inneren des Supraleiters verdrängt, d.h. der Supraleiter wird zum idealen Diamagneten (alle Elektronen gepaart)

Erklärung

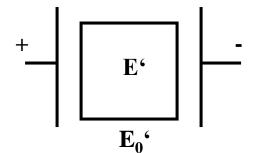
Unterhalb der Sprungtemperatur bilden sich im Inneren des Supraleiters Wirbelströme, die wiederum ein Magnetfeld verursachen

Beide Magnetfelder kompensieren sich

⇒ Der Magnet schwebt

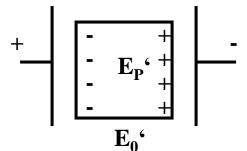
Anwendung von Hochtemperatursupraleitern

- NMR-Spektroskopie
- Kernspintomographie (MRT)
- Bahn-Antriebstechnik (Magnetschwebebahn)
- Elektromotoren und Generatoren
- Kernfusionsanlagen
- Gleich- und Wechselstromleitungen
- Teilchenbeschleuniger
- Messung extrem
 kleiner Magnetfelder
 (Superconducting
 QUantum Interference
 Device SQUID)


Isolatoren (Dielektrika)

- \Rightarrow Ein sehr hoher elektrischer Widerstand wird durch eine großen Energieabstand zwischen Valenz- und Leitungsband bedingt: $E_g > 3.0 \text{ eV}$
- **⇒** Keramiken und Polymere

Isolatoren können Informationen erzeugen (Sender) oder empfangen (Antenne) oder in Form von Kondensatoren elektrische Ladung speichern


Der Begriff "Dielektrikum" bringt zum Ausdruck, dass ein äußeres elektrisches Feld in das Material eindringen kann.

In Metallen oder Halbleitern ist E' = 0

Freie Ladungen verschieben sich bis E' = 0

In Isolatoren (Dielektrika)

Das äußere Feld wird durch Polarisation reduziert

Dipole und Polarisation

Unter der Wirkung eines elektrischen Feldes E_0 können in einem Material Dipole entstehen oder permanent vorhandene Dipole in Feldrichtung ausgerichtet werden.

Elementare Dipole sind Atome oder Atomgruppen, bei denen die Schwerpunkte positiver und negativer Ladung nicht zusammenfallen

 \Rightarrow Gewinkelte Moleküle, wie z. B. H_2O , NH_3 , SO_2 , $CH_2Cl_2 \rightarrow$ Punktgruppen: C_{nv} oder C_2

Die Ausrichtung von Dipolen in einem elektrischen Feld wird als Polarisation P bezeichnet:

von Molekülen von Festkörpern

 $P = q \cdot d$ [Debye] $P = z \cdot q \cdot d$ [Debye]

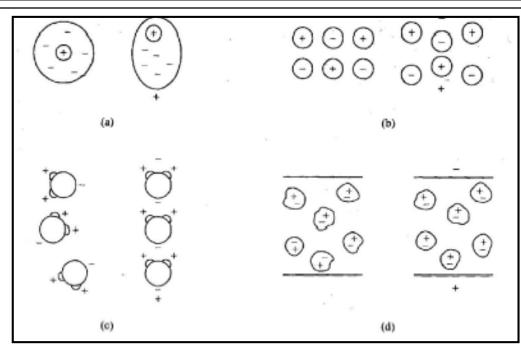
(1 Debye \cong 3,33564 ·10⁻³⁰ Cm)

 $P = \varepsilon_0 \cdot (\varepsilon_r - 1) \cdot E_0$ z = Anzahl der verschobenen Ladungszentren

q = elektrische Ladung

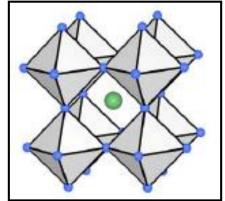
 ε_r -1 = elektrische Suszeptibilität χ_e

d = Abstand zwischen positiver und negativer Ladung


 ϵ_0 = Permittivitätszahl des Vakuums = 8,854·10⁻¹² C²/Jm = 1/c² μ_0

 $E_n = 1/(\varepsilon_0 \cdot \varepsilon_r) \cdot P$ $\varepsilon_r = Permittivitätszahl des Materials$

Funktionsmaterialien Prof. Dr. T. Jüstel

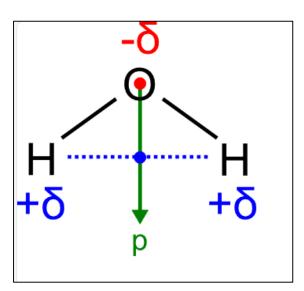

Polarisationsarten

a) Elektronenpolarisation
Im elektrischen Feld werden die
Elektronen geringfügig in positiver
Feldrichtung verschoben. Dieser Effekt
tritt in allen Substanzen auf.
Die Elektronenpolarisation verschwindet,
wenn das elektrische Feld abgestellt wird.

b) Ionenpolarisation

In einem heteropolar gebundenen Material ruft das elektrische Feld geringfügige Ladungsverschiebungen hervor. Durch diese Verschiebungen können sich die äußeren Abmessungen des Materials ändern. Die Ionenpolarisation verschwindet, wenn das elektrische Feld abgestellt wird.

⇒ Diese beiden Arten werden als Verschiebungspolarisation bezeichnet

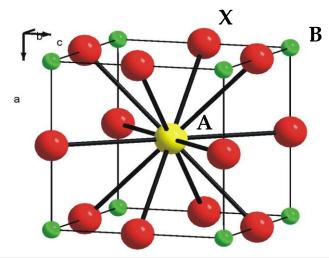

BaTiO₃ ein Perovskit

Polarisationsarten

c) Molekülpolarisation

Permanente Dipole richten sich bevorzugt in Richtung eines äußeren Feldes aus

Molekül	P [Debye]
O ₃ (Ozon)	0,53
COCl ₂ (Phosgen)	1,17
NH ₃ (Ammoniak)	1,42
H ₂ O (Wasser)	1,85
HCl (Chlorwasserstoff)	2,98
NH ₂ -CN (Cyanamid)	4,27


d) Polarisation durch Raumladung

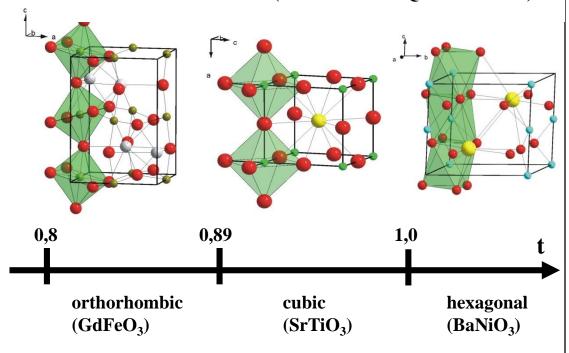
Begünstigt durch Fremdatome können sich im Inneren eines Stoffes an Phasengrenzen Ladungen ansammeln, die in einem elektrischen Feld an die Oberfläche wandern. Für die meisten Dielektrika ist diese Art der Polarisation bedeutungslos

⇒ Diese beiden Arten werden als Orientierungspolarisation bezeichnet

Funktionsmaterialien Prof. Dr. T. Jüstel

Perovskit ABX₃

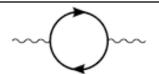
$$a = 2(r_B + r_O) = \frac{2(r_A + r_O)}{\sqrt{2}}$$

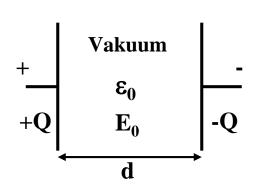

$$t = \frac{(r_A + r_O)}{\sqrt{2}(r_B + r_O)} \quad ("Toleranz faktor")$$

 $X = O^{2-}, F^{-}, Cl^{-}$

A = Alkali, Erdalkali- und SE-Metalle, (NR_4^+)

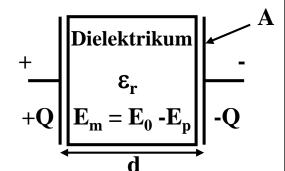
B = Übergangsmetalle und Si, Al, Ge, Ga, Bi, Pb


⇒ Jahn-Teller-Polaronen (fermionische Quasiteilchen)


Perovskit ist der Name eines russischen Mineralogen: Graf Lev Aleksevich von Perovski (1792-1856)

Das Mineral CaTiO₃ wurde durch Gustav Rose 1839 im Ural entdeckt

Materie als Kondensatorfüllung



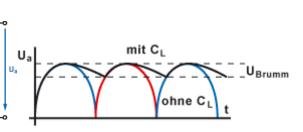
Ein äußeres Feld E_0 wird im Inneren eines Dielektrikums um den Faktor ε_r reduziert

Vakuumpolarisation/fluktuationen

- Lamb-Verschiebung
- Casimir-Effekt
- Spontane Emission
 - Van-der-Waals-WW.
 - Hawking-Strahlung $\Rightarrow \epsilon_0 = 8.854 \cdot 10^{-12} \, AsV^{-1}m^{-1} \neq 0!$

Wird Materie in den Kondensator eingebracht, so wird U um ε_r reduziert, da E_0 ebenfalls um ε_r reduziert wird, und $U = E \cdot d$ ist.

Q bleibt unverändert, da die Platten nicht miteinander elektrisch verbunden sind!


 $\begin{array}{lll} \mbox{Vakuum:} & Q = C_0 \cdot U & C_0 = \epsilon_0 \cdot A/d & \mbox{mit } C = \mbox{Kapazit\"{a}t} \; [C/V = F] \\ \mbox{Mit Materie:} & Q = C_m \cdot U/\epsilon_r & C_m = \epsilon_r \cdot \epsilon_0 \cdot A/d & \mbox{also } C_m/C_0 = \epsilon_r \; (\mbox{dimensionslos}) \\ \end{array}$

Um eine hohe Kondensatorkapazität zu erhalten, müssen die Fläche A möglichst groß, d klein und das ε_r der Füllung möglichst groß sein!

Kondensatoren

Kondensatoren dienen zur

- Ladungsspeicherung
- Glättung von Strömen
- dienen zur beicherung von Strömen

• frequenzabhängigen Kopplung zwischen Wechsel- und Gleichstromkreisen

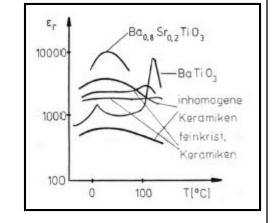
Kriterien für den Einsatz von dielektrischen Materialien in Kondensatoren

- 1. Hohe Permittivitätszahl $\varepsilon_r = \varepsilon/\varepsilon_0$
- 2. Hohe Durchschlagfestigkeit: $E_{max} = (V/d)_{max}$
 - ⇒ Gibt die maximal zulässige Feldstärke an, der ein Dielektrikum ausgesetzt werden darf
- 3. Hoher elektrischer Widerstand
 - ⇒ Verhinderung des Ladungsaustausches zwischen den Kondensatorplatten
 - ⇒ Polymere und keramische Werkstoffe
- 4. Geringe dielektrische Verluste bzw. kleiner Verlustfaktor = $tan\delta$ (Bewegung der Dipole führt zu einer Erwärmung des Materials und somit zu einer Reduktion des Phasenvorlaufwinkels des Stroms auf 90° δ mit δ = Verlustwinkel)

Eigenschaften von Dielektrika (idealer Kondensator: Phasenverschiebung = 90°)

Material	Permittivitäts- zahl (bei 10 ⁶ Hz)	Durchschlagfestig- keit (10 ⁶ V/m)	Verlustfaktor tan δ $(\delta = 90^{\circ}\text{-}\phi \text{ bei } 10^{6} \text{Hz})$	Spezif. elektrischer Widerstand (Ω·cm)
Polyethylen	2,3	20	0,0001	> 10 ¹⁶
Polytetrafluorethylen	2,1	20	0,00007	1018
Polystyrol	2,5	20	0,0002	1018
Polyvinylchlorid	3,5	40	0,05	1012
Nylon	4,0	20	0,04	10 ¹⁵
Gummi	4,0	24		
Phenolharz	7,0	12	0,05	1012
SiO ₂ (Quarzglas)	3,8	10	0,00004	$10^{11} - 10^{12}$
Natriumkalkglas	7,0	10	0,009	10 ¹⁵
Al_2O_3	6,5	6	0,001	$10^{11} - 10^{13}$
TiO ₂	14 – 110	8	0,0002	$10^{13} - 10^{18}$
Glimmer	7,0	40		10 ¹³
Ba _{1-x} Ca _x Ti _{1-y} Zr _y O ₃	~3000	12		$10^8 - 10^{15}$
H ₂ O	78			10 ¹⁴

Funktionsmaterialien Prof. Dr. T. Jüstel


Eigenschaften dielektrischer Materialien

Hohe und höchste Permittivitätszahlen zeigen Perowskite (BaTiO₃, PbTiO₃, LiNbO₃) und

Schichtperowskite (Ba_2LnNbO_6 mit Ln = Y, Gd, Lu)

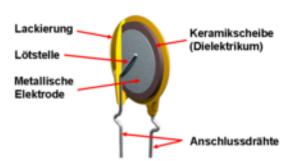
BaTiO₃

- $\varepsilon_r = 7000$ in der Nähe der Curie-Temperatur T_c
- Aber starke T-Abhängigkeit, ϵ_r nimmt beim Abkühlen auf 1000-2000 ab
- ⇒ Abhängigkeit der Kondensatorkapazität von der Temperatur

Ziel

Dielektrika mit ε_r = konstant im Bereich von 218 K (-55 °C) bis 398 K (+125 °C)

- ⇒ Keramiken aus (dotierten) Mischkristallen
- \Rightarrow Ba_{1-x}Ca_xTi_{1-y}Zr_yO₃:Nb

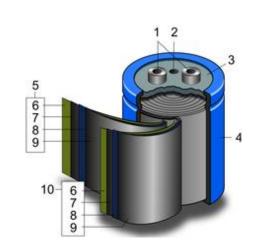

Materia	l T-Abhängigkeit	<u>E_r</u>
NP0	+/- null	Î
X7R	mäßig	
Z5 U	stark	↓
(Electronic Industries Association EIA)		

Außerdem beeinflussen Korngröße und Korngrößenverteilung die Permittivitätszahl!

Funktionsmaterialien Prof. Dr. T. Jüstel

Bauformen von Kondensatoren

1. Scheibenkondensator



Innere Elektroden

Kontakt Kontakt

2. Vielschichtkondensator

3. Wickelkondensator

Al-Anode

Al₂O₃ (Dielektrikum)

Elektrolyt

Al-Kathode

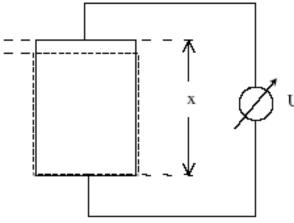
4. Elektrolytkondensator

Al-Elko: Al₂O₃ + Elektrolyt Zitronensäure

Ta-Elko: Ta₂O₅ + Elektrolyt Schwefelsäure

Funktionsmaterialien Prof. Dr. T. Jüstel

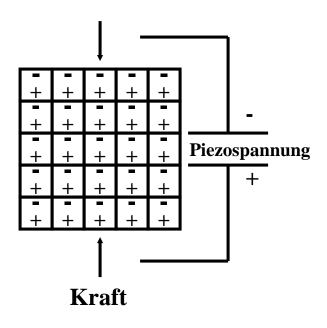
Piezoelektriztät und Elektrostriktion

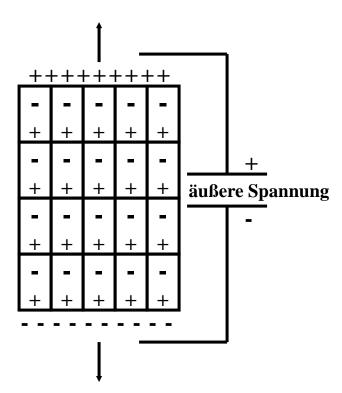

In einem elektrischen Feld können sich die Abmessungen eines Festkörpers in Folge der Polarisation ändern. Dieser Effekt wird als Elektrostriktion bezeichnet

Bei bestimmten als piezoelektrisch bezeichneten Substanzen kommt es zur Polarisation und zum Entstehen einer elektrischen Spannung, wenn durch äußere Kräfte die Abmessungen des Materials geändert werden

Piezoelektrische Substanzen

⇒ Elementarzelle ohne Symmetriezentrum


Material	Formel	Piezomodul d [m/V]
α-Quarz	SiO_2	2,3·10-12
Bariumtitanat	BaTiO ₃	100·10 ⁻¹²
PZT	PbZrO ₃ -PbTiO ₃	250·10 ⁻¹²
PLTZ	$(Pb,La)(Ti,Zr)O_3$	
	PbNb ₂ O ₆	80·10-12


$$E = \frac{1}{d} \cdot \frac{\Delta x}{x} = \frac{1}{d} \cdot \varepsilon$$

Funktionsmaterialien Prof. Dr. T. Jüstel

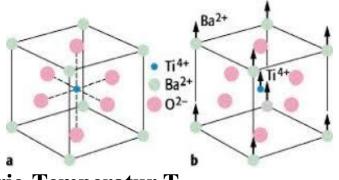
Der piezoelektrische Effekt

Durch äußere Kompression verringern sich die Abstände zwischen den Ladungen, so dass eine piezoelektrische Spannung entsteht

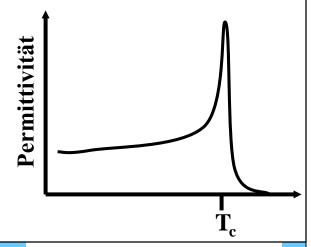
Anlegen eines äußeren Feldes bewirkt eine Längenänderung (Dehnung) des Kristalls

Anwendung des piezoelektrische Effektes

- 1. Elektroakustische Wandler
 - Schallwellen ↔ elektrische Signale
 - ⇒ Durch eine auftreffende Schallwelle wird das piezoelektrische Material mit der Frequenz der Schallwelle verformt und erzeugt eine elektrische Wechselspannung (Die Wechselspannung kann nach entsprechender Verstärkung durch einen zweiten Wandler in Schallwellen zurückverwandelt werden, z.B. in Phonogeräten)
- 2. Temperatursensoren
 - ⇒ Temperaturänderungen können in einigen pyrolektrischen Stoffen eine Polarisation und elektrische Spannung induzieren
- 3. Stabilisierung von Schwingkreisen in Uhren und elektronischen Geräten
 - ⇒ Quarzkristalle werden durch Anlegen eines Wechselfeldes zum Schwingen angeregt
 - ⇒ Sobald die Schwingungsfrequenz des Quarzkristalls mit der des externen elektrischen Feldes übereinstimmt tritt Resonanz auf und es bilden sich stehende Welle aus

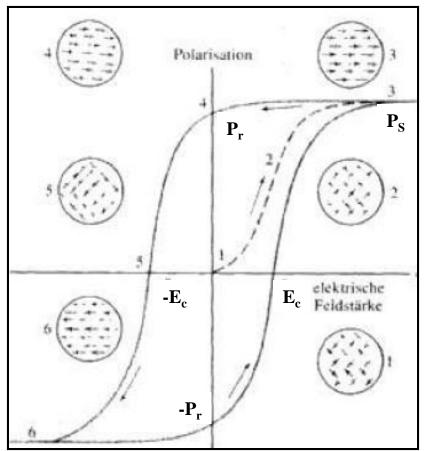

Ferroelektrizität

In BaTiO₃ und einigen anderen Substanzen ($A_{n+1}B_nO_{3n+1}$, A=Ca, Sr, Ba, B=Ti, Zr, Ge, Sn, n=1,2,... = Ruddlesden-Popper Reihe) bleibt nach dem Abschalten des elektrischen Feldes eine gewisse Polarisation bestehen!


Alternative: Schichtperowskite $(Sr,Ba)_2Ln(Nb,Ta)O_6$ mit Ln = Y, Gd - Lu

Ursache des ferroelektrischen Verhaltens ist eine Wechselwirkung zwischen permanenten Dipolen (Domänen ~ $10~\mu m$), die durch deren einheitliche Orientierung begünstigt wird

Bei der Curie-Temperatur T_c verschwindet das ferroelektrische Verhalten



Beim $BaTiO_3$ findet bei der Curie-Temperatur T_c die Phasenumwandlung tetragonal \leftrightarrow kubisch statt!

Funktionsmaterialien Prof. Dr. T. Jüstel

Ferroelektrizität

 P_r = Remanente Polarisation

 P_s = Sättigungspolarisation

 $E_c = Koerzitivfeldstärke$

Die Fähigkeit ferroelektrischer Stoffe, den polarisierten Zustand aufrecht zu erhalten, bietet die Möglichkeit zur Informationsspeicherung

Das magnetische Verhalten der Materie wird durch bewegte Ladungsträger bedingt

Historisches

600 v. Chr. Thales von Milet λιθος μαγντίς = lithos magnesia = Stein aus Magnesia

100 v. Chr. Chinesen Kompass

1820 Oersted Elektrische Ströme lenken Magnetnadel aus

1830 - 1845 Faraday Magnetische Induktion: Generator, Transformator, ...

1864 Maxwell Elektromagnetismus (Maxwell-Gleichungen)

1896 Zeeman Aufspaltung von Linienspektren durch Magnetfelder

1900 Curie Temperaturabhängigkeit des Magnetismus

1907 Weiss Erste quantenmechanische Deutung des

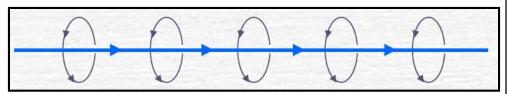
makroskopischen Magnetismus

Formen des Magnetismus

Diamagnetismus Moleküle ohne ungepaarte Elektronen

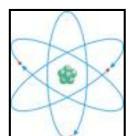
Paramagnetismus Moleküle mit mindestens einem ungepaarten Elektron

Ferromagnetismus Kooperativer Effekt

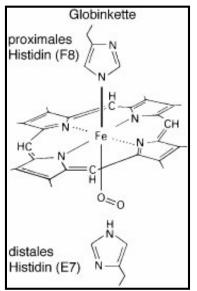

Ferrimagnetismus Kooperativer Effekt — nur im Festkörper

Antiferromagnetismus Kooperativer Effekt

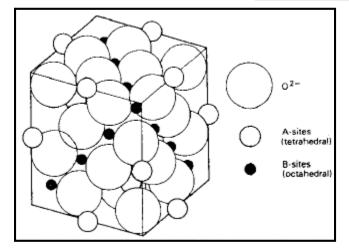
Funktionsmaterialien Prof. Dr. T. Jüstel


Erscheinungsformen des Magnetismus

1. Bewegte Ladungsträger im Leiter


elektrischer Leiter

2. Atomarer Magnetismus bzw. bewegte Ladungsträger (Elektronen) im Atom



3. Molekularer Magnetismus

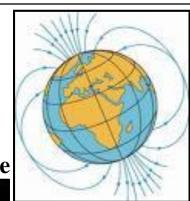
4. Festkörpermagnetismus

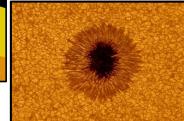
Hämoglobin

Magnetit Fe₃O₄ "Ein Ferrimagnet"

Bedeutung des Magnetismus

Ablenkung des Sonnenwindes (→ Polarlichter) Erdmagnetfeld


Orientierung von Zugvögeln, Haie, Langusten


 \Rightarrow Fe₃O₄-Nanopartikel

Sonnenflecken (Plasmakonvek.: Austrittspunkte **Sternmagnetfeld**

magnetischer Feldlinien)

Form planetarischer Nebel

Technischer Bereich

Beispiele

Analytik NMR, EPR, optische Spektroskopie

Datenspeicherung Magnetbänder, Diskettenlaufwerke, Festplatten

Spulen, Generatoren, Transformatoren Elektrotechnik

Hochenergiephysik Ringbeschleuniger

Medizin MRTs, NMR-Verschiebungsreagenzien

Magnetooptische Kristalle Optik

Navigation Schifffahrt

Sensorik **Giant Magneto-Resistance (GMR)-Sensoren**

Supraleitende Quanteninterferenzdetektoren

(SQUID)-Sensoren

Funktionsmaterialien Prof. Dr. T. Jüstel

Magnetische Feldstärke H, magnetische Flussdichte B und Magnetisierung M

Ein Magnetfeld erzeugt im Vakuum einen magnetischen Fluss, dessen Stärke und Richtung durch Flusslinien veranschaulicht werden kann. Die Anzahl dieser Linien pro Flächeneinheit wird als magnetische Flussdichte B oder magnetische Induktion bezeichnet und ist proportional zur magnetischen Feldetärke H

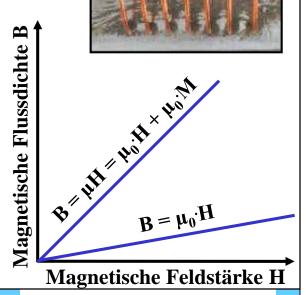
tional zur magnetischen Feldstärke H.

$$B = \mu_0 H$$

mit
$$\mu_0$$
 = Permeabilität des Vakuums [Vs/Am]
= $4\pi \cdot 10^{-7}$ Vs/Am

Die Flussdichte ändert sich beim Eindringen des magnetischen Feldes in Materie, was durch die Größen μ_r oder M ausgedrückt werden kann

$$B = \mu_0 \mu_r H$$


$$B = \mu H = \mu_0 H + \mu_0 M$$

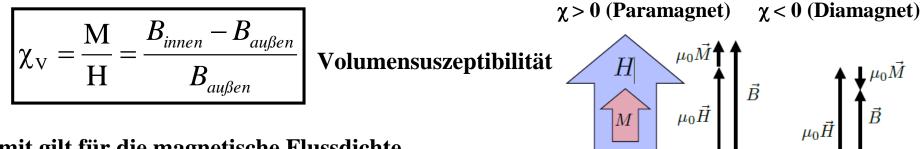
 μ_r = Rel. Permeabilität des Materials

 $M = \chi H = Magnetisierung$

 χ = magnetische Suszeptibilität

 $\mu = \mu_r \cdot \mu_0 = Absolute Permeabilität$

Funktionsmaterialien Prof. Dr. T. Jüstel


Typische magnetische Flussdichten B

Beispiel	Magnetische Flussdichte B [T]
Magnetare	10 ¹¹ - 10 ¹⁴
Kollidierende Neutronensterne	10 ¹¹ Ein Frosch schwebt in
Neutronenstern	10 ⁸ einem
Weiße Zwerge	10 ⁴ Magnetfeld
Innere Austauschfelder in Ferromagnetika	$10^{1} - 10^{3}$ von 16 T
Supraleitende Magnete	10 ¹ (Weltrekord: 91,4 T am HZDR)
Spule mit Eisenjoch	10
Oberfläche von Ferromagnetika	$10^{-1} - 10^{1}$
Sonnenflecken, planetarische Nebel	10 ⁻¹
Erdmagnetfeld	10 ⁻⁴ (48 μT bei Frankfurt am Main)
Technische Streufelder "urban noise"	$10^{-12}_{10} - 10^{-5}$
Feld in Galaxien	10 ⁻¹⁰
Felder in Galaxienhaufen	10 ⁻¹⁰ - 10 ⁻¹³
Intergalaktisches Magnetfeld	10 ⁻¹³
$1 \text{ T (Tesla)} = 1 \text{ Vs/m}^2 = 10^4 \text{ G (Gauß)}$	Einheiten der magnetischen Flussdichte

Die magnetische Suszeptibilität χ (Empfindlichkeit)

Sie ist ein Maß für die durch das Material hervorgerufene Feldverstärkung:

$$\chi_{
m V} = rac{
m M}{
m H} = rac{B_{innen} - B_{aueta en}}{B_{aueta en}}$$

Damit gilt für die magnetische Flussdichte

$$B = \mu H = \mu_0 H + \mu_0 M = \mu_0 (H + M) = \mu_0 (H + \chi H) = \mu_0 (1 + \chi)H$$

$$\mu_r = 1 + \chi$$

$$\mathbf{mit} \ \mathbf{\chi}_{\mathbf{V}} \cdot \mathbf{V}_{\mathbf{m}} = \mathbf{\chi}_{\mathbf{g}} \cdot \mathbf{M} = \mathbf{\chi}_{\mathbf{mo}}$$

 $\label{eq:model} \boxed{\mu_r = 1 + \chi} \quad \text{mit } \chi_V \cdot V_m = \chi_g \cdot M = \chi_{mol} \qquad \chi_{mol} = \text{Molsuszeptibilität, } \chi_V = \text{Volumensuszept.}$

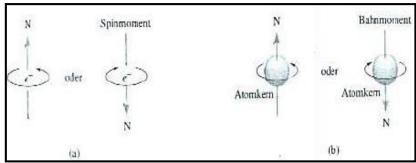
Von großer technischer Bedeutung sind magnetische Werkstoffe, bei denen M wesentlich

größer als H ist

$$\Rightarrow \overline{\mathbf{B} \cong \mu_0 \mathbf{M}}$$

Magnetische Dipole und magnetische Momente µ

Magnetisierung M entsteht durch die Ausrichtung induzierter oder permanent vorhandener magnetischer Dipole in einem äußeren magnetischen Feld mit der Feldstärke H


Die Stärke des von einem magnetischen Dipol erzeugten Magnetfeldes ist sein magnetisches Moment µ

$$M = \frac{\displaystyle\sum_{i} \mu_{i}}{V}$$

r Hapln v

Elektronen in einem Atom bedingen ein magnetisches Moment bestehend aus

- a. Spinmoment: Eigendrehimpuls (Spin) des Elektrons: $\mu_S = -g_s \cdot \mu_B \cdot S$ mit $g_s = 2$
- b. Bahnmoment: Resultiert aus Bewegung des Elektron: $\mu_l = -g_l \cdot \mu_B \cdot n$ mit $g_l = 1$
- c. Gesamtmoment: Resultiert aus Spin-Bahn-Kopplung: $\mu_J = -g_j \cdot \mu_B \cdot J$ mit $g_l < g_j < g_s$

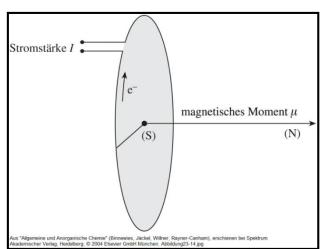
Außerdem existiert noch ein Kernspinmoment, das aber aufgrund der geringen Größe für den makroskopisch beobachtbaren Magnetismus keine wesentliche Rolle spielt $(m_{proton} \sim 1836 \ m_e)$

Das Bohr'sche Magneton μ_B

Die elementaren magnetischen Momente können als ein Vielfaches eines Bohr'schen Magnetons μ_B ausgedrückt werden, das die Basiseinheit des magnetischen Momentes ist

$$\mu_{\rm B} = \frac{\mathbf{e} \cdot \mathbf{h}}{4\pi \cdot \mathbf{m}_{\rm e}} = 9,27 \cdot 10^{-24} \,\mathrm{Am^2}$$

$$e = 1,602 \cdot 10^{-19} \text{ C}$$
 Elementarladung
 $h = 6,626 \cdot 10^{-34} \text{ Js}$ Planck'sches Wirkungsquantum
 $m_e = 0,9109 \cdot 10^{-30} \text{ kg}$ Ruhemasse des Elektrons


Es entspricht dem magnetischen Moment, das ein Elektron auf einer Kreisbahn mit dem Bohr'schen Radius (52.9 pm) um ein Proton erzeugt

Für leichte Elemente mit n ungepaarten Elektronen entspricht das magnetische Moment μ dem "Spin-only Wert" μ_S

$$\boldsymbol{\mu}_{berechnet} = \sqrt{n(n+2)} \cdot \boldsymbol{\mu}_{B}$$

$$\mu_{\text{berechnet}} = 2\sqrt{S(S+1)} \cdot \mu_B$$

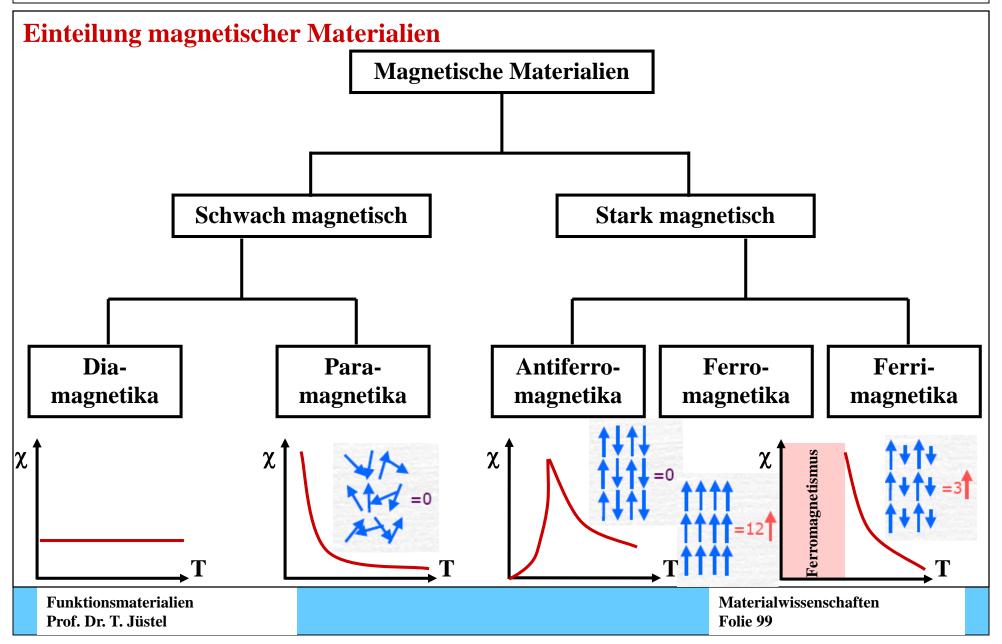
Gesamtspin
$$S = \Sigma s$$

mit $s = \frac{1}{2} d$. h. $S = n/2$
bzw. $n = 2S$

Magnetisches Verhalten von 3d-Übergangsmetallionen: Spin-only Werte

Elektronen- konfiguration	Ion	Grundzustand [RS-Term]	Zahl ungepaarter Elektronen	μ _{berechnet} [μ _B] high-spin	$m{\mu_{ ext{experimentell}}}{[m{\mu_{B}}]}$
[Ar]3d ⁰	Sc ³⁺	$^{1}S_{0}$	0	0	0
[Ar]3d ¹	Ti ³⁺	$^{2}\mathbf{D}_{3/2}$	1	1,73	1,7 – 1,8
[Ar]3d ²	V ³⁺	$^{3}\mathbf{F}_{2}$	2	2,83	2,7 – 2,9
[Ar]3d ³	V ²⁺ , Cr ³⁺ , Mn ⁴⁺	⁴ F _{3/2}	3	3,87	3,7 – 3,9
[Ar]3d ⁴	Cr ²⁺ , Mn ³⁺	$^{5}\mathbf{D_{0}}$	4	4,90	4,8 – 4,9
[Ar]3d ⁵	Mn ²⁺ , Fe ³⁺	⁶ S _{5/2}	5	5,92	5,7 – 6,0
[Ar]3d ⁶	Fe ²⁺ , Co ³⁺	⁵ D ₄	4	4,90	5,0 – 5,6
[Ar]3d ⁷	Co ²⁺ , Ni ³⁺	$^{4}F_{9/2}$	3	3,87	4,3 – 5,2
[Ar]3d ⁸	Ni ²⁺	$^{3}\mathbf{F}_{4}$	2	2,83	2,9 – 3,9
[Ar]3d ⁹	Cu ²⁺	$^{2}\mathbf{D}_{5/2}$	1	1,73	1,9 – 2,1
[Ar]3d ¹⁰	Cu+, Zn ²⁺	¹ S ₀	0	0	0

Der Elektronenspin ist weitgehend allein verantwortlich für das magnetische Verhalten der 3d-Übergangsmetallionen


Funktionsmaterialien Prof. Dr. T. Jüstel

Exkurs: Größen und Einheiten des Elektromagnetismus

Elektrizität			Magnetismus	
Elektrische Feldstärke	E	[<mark>V</mark> /m]	Magnetische Feldstärke H	[A /m]
Elektrische Flussdichte	D	$[As/m^2]$	Magnetische Flussdichte B	$[Vs/m^2]$
Permittivität des Vakuums (Elektrische Feldkonstante)		[As/Vm]	Permeabilität des Vakuums µ0 (Magnetische Feldkonstante)	[Vs/Am]
Elektrischer Widerstand	R	[V / A]	Magnetischer Widerstand Rm	[A/V]

Beim Übergang von den elektrischen Größen zu den analogen magnetischen Größen sind in den Einheiten A und V wechselseitig zu ersetzen!

Funktionsmaterialien Prof. Dr. T. Jüstel

Diamagnetismus

Der Diamagnetismus wird durch die magnetischen Bahnmomente der Elektronen hervorgerufen und tritt in jedem Material auf. Beim Einschalten eines Magnetfelds werden Kreisströme induziert, die nach der Lenz'schen Regel das äußere Magnetfeld abschwächen d.h.

 $\mu_r < 1 \ und \ \chi < 0$

- Der Diamagnetismus ist nur schwach und wird von anderen Magnetismusarten überlagert
- Der Diamagnetismus ist unabhängig von der Feldstärke und nahezu temperaturunabhängig
- Atome, Ionen und Moleküle mit abgeschlossenen Schalen bzw. Festkörper, welche aus solchen bestehen, sind diamagnetisch
- Supraleiter sind in nicht zu starken Feldern ideale Diamagnete!

Substanz	$\chi_{\rm mol}$ [10-6	Subs	tanz χ _{mol} [10 ⁻⁶]
$\overline{N_2}$	-0,0003	Bi	-16,6
$\mathbf{Li}^{\scriptscriptstyle +}$	-0,7	Ar	-19,4
Cu	-1,1	$\mathbf{R}\mathbf{b}^{+}$	-22,0
Pb	-1,8	Cl-	-24,2
He	-1,9	Kr	-28
$C_{\rm sp}^{-3}$	-2,1	Br	-34,5
$\mathbf{A}\mathbf{g}$	-2,4	Xe	-43
Hg	-2,9	H_2O	-90
Na ⁺	-6,1		geschlossene Elektronenhülle ~kugelsymmetrische Elektronendichte
Ne	-7,2 ∠	H	$\vec{\omega} = \frac{e}{2m} \vec{B}_0$ diamagnetische Abschirmung
C_6H_6	-7,2		B _d induzierte
F -	-9,4		
\mathbf{K}^{+}	-14,6		
Cs ⁺	-35,1		

Paramagnetismus

Paramagnetismus tritt auf, wenn ein permanentes magnetisches Moment vorliegt, wobei ungepaarte Elektronen (Spin-Magnetismus) oder nicht gefüllte Elektronenschalen (Bahn-Magnetismus) die Ursache sein können.

Ohne Magnetfeld sind die magnetischen Momente statistisch verteilt. Im Magnetfeld werden diese so ausgerichtet, dass eine Verstärkung des äußeren Feldes eintritt, d.h. $\mu_r > 1$ und $\chi > 0$

Temperaturabhängigkeit paramagnetischer Materialien

Curie-Weiß-Gesetz

$$\chi = \frac{C}{T - \Theta}$$

mit

 Θ = paramagnetische Curie-Temperatur $1/\chi$

C = **Curiekonstante**

Die paramagnetische Suszeptibilität wird mit steigender Temperatur kleiner, da die thermische Bewegung der magnetischen Ordnung entgegenwirkt

Kooperativer Magnetismus (am Beispiel binuklearer Metallkomplexe)

Ferromagnetismus

Parallele Ausrichtung der Spins bei tiefen Temperaturen mit hohem Gesamtspin

$$\Rightarrow$$
 $Cr^{4+}(d^2)-O-Cr^{4+}(d^2)$

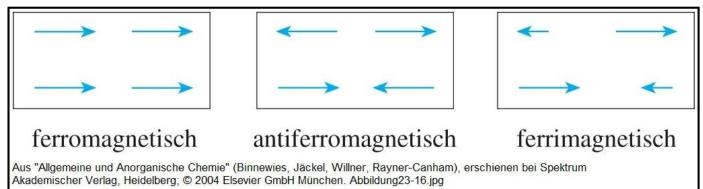
$$S = 4/2$$

Antiferromagnetismus

Antiparallele Ausrichtung der Spins bei tiefen Temperaturen, Gesamtspin ist null

$$\Rightarrow \qquad \mathbf{Mn^{2+}(d^5)\text{-}O\text{-}Mn^{2+}(d^5)}$$

$$S = 0$$

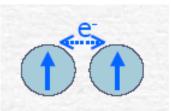

Ferrimagnetismus

Antiparallele Ausrichtung der Spins bei tiefen Temperaturen, aber Gesamtspin ist nicht null

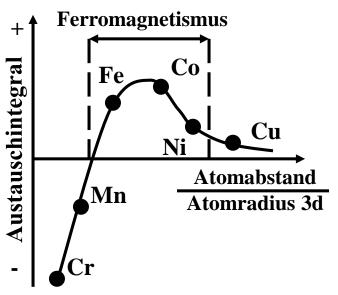
$$\Rightarrow$$

$$Fe^{2+}(d^6)-O-Fe^{3+}(d^5)$$

$$S = 1/2$$

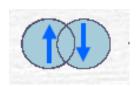


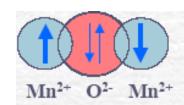
Funktionsmaterialien Prof. Dr. T. Jüstel


Abstandsabhängigkeit der Austauschwechselwirkung

Positive (ferromagnetische) Austauschwechselwirkung (+)

Delokalisierte s- und d-Elektronen (Bandmagnetismus)


Beispiele: Fe, Co, Ni, Gd



Antiferromagnetismus

Negative (antiferromagn.) Austauschwechselwirkung (-)

Überlapp der 3d-Orbitale (Superaustausch)

Beispiele: Cr, Mn, MnO

$$\psi(r_1, r_2) = \psi_a(r_1)\psi_b(r_2)
\psi(r_1, r_2) = \psi_a(r_2)\psi_b(r_1)
\psi(r_1, r_2) = \psi_a(r_1)\psi_b(r_2) + \psi_a(r_2)\psi_b(r_1)
\psi(r_1, r_2) = \psi_a(r_1)\psi_b(r_2) - \psi_a(r_2)\psi_b(r_1)$$

Ferromagnetismus

Material $T_{C}(K)$

Unterhalb einer bestimmten Temp. T_C tritt spontane Ausrichtung der Elementarmagnete ein

- ⇒ Bereits ohne äußeres Feld existieren Domänen (Weiß'sche Bezirke), in denen benachbarte magnetische Momente parallel ausgerichtet werden.
- ⇒ Diese Domänen haben eine Länge von ca. 50 µm und werden durch 10-100 nm dicke Blochwände voneinander getrennt →

Domäne Bloch wand Magnetische Momente

Eigenschaften wichtiger ferromagnetischer Materialien

Co	1394	1,715
Fe	1043	2,22
Ni	631	$\frac{0.605}{3.5} \frac{\mu}{U} = g_J \sqrt{J(J+1)}$
MnSb	587	3,5 $\overline{\mu_B} = g_J \sqrt{J(J+1)}$ $N_A \mu_B^2 g^2 \left[2 \cdot \exp\left(\frac{2J}{kT}\right) \right]$
CrO ₂	386	$S(S+1) - I(I+1) + I(I+1) \gamma_{m} = \frac{M \cdot B \cdot B}{M \cdot B \cdot B} \cdot \frac{1}{M \cdot $
Gd	289	7,5 $g_J = 1 + \frac{S(S+1) - E(E+1) + S(S+1)}{2J(J+1)} \chi_M kT$ $1 + 3 \cdot \exp\left(\frac{2J}{kT}\right)$

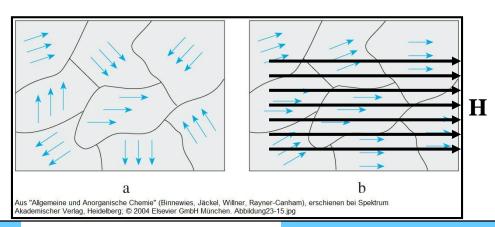
Magnetisches Moment $[\mu_R]$

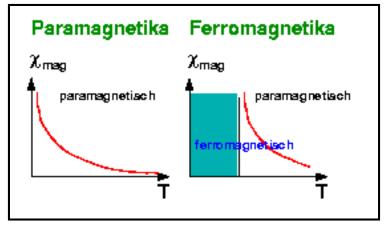
88 $10,2 \rightarrow Spin-Bahn-Kopplung \rightarrow J$

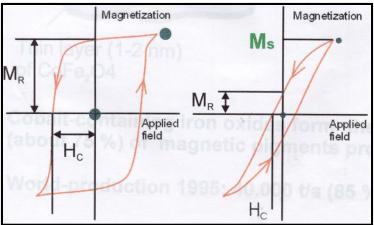
EuO 70 6,9 "Bleaney-Bowers-Gleichungen"

EuS 16.5 6.9

Dy


Ferromagnetismus


Beim Anlegen eines äußeres Magnetfeldes wachsen die Domänen an, die parallel zum äußeren Feld liegen. Die anderen Domänen schrumpfen.

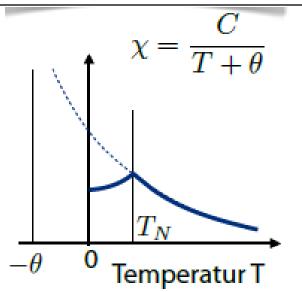

Oberhalb der Curie-Temperatur T_C werden Ferromagnetika zu Paramagnetika

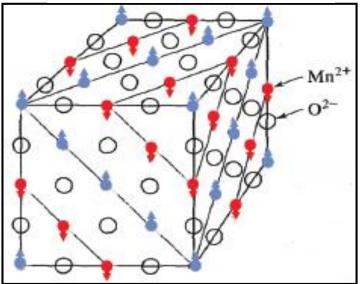
$$\mathbf{H}=\mathbf{0,M}=\mathbf{0}$$

$$H > 0, M < M_s$$

 $\begin{aligned} & \text{Magnetische Remanenz } \mathbf{M_R} \\ & \text{S\"{a}ttigungsmagnetisierung } \mathbf{M_s} \\ & \text{Koerzitivfeldst\"{a}rke } \mathbf{H_c} \end{aligned}$

Antiferromagnetismus


Unterhalb einer bestimmten Temperatur, d.h. der T_N (Néel-Temperatur) sind benachbarte magnetische Momente antiparallel ausgerichtet und kompensieren sich


Es gilt dann: $\mu_r = 1$ und $\chi = 0$

Beispiel: MnO

- Magnetische Momente von Mn²⁺-Ionen unterschiedlicher Ebenen kompensieren sich
- Oberhalb der Néel-Temperatur T_N werden Antiferromagnetika zu Paramagnetika

Material	$T_{N}[K]$
MnO	1 <u>1</u> 6
FeO	198
CoO	291
Cr	308
NiO	525
Mn	540

Funktionsmaterialien Prof. Dr. T. Jüstel

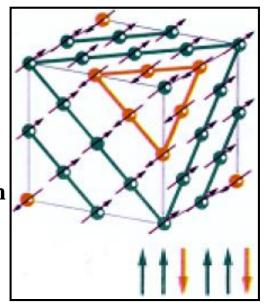
Ferrimagnetismus

Benachbarte magnetische Momente sind antiparallel ausgerichtet, aber kompensieren sich nicht völlig. Ferrimagnetismus tritt in Materialien auf, in denen die unterschiedlichen Ionenarten verschieden starke magnetische Momente besitzen:

Ferrite MFe₂O₄

mit $M = Zn^{2+}$, Co^{2+} , Fe^{2+} , Ni^{2+} , Cu^{2+} , Mn^{2+}

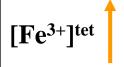
Granate


 $M_3Fe_2Fe_3O_{12}$

 $mit M = Ln^{3+}$

Im Magnetfeld richten sich die magnetischen Momente der unterschiedlichen Ionenarten antiparallel aus, woraus eine Nettomagnetisierung resultiert

Bemerkung

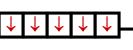

Antiferromagnetismus ist eigentlich ein Spezialfall des allgemeineren Ferrimagnetismus, in dem die beiden Untergitter als äquivalent gelten können

Ferrimagnetismus im inversen Eisenoxidspinell Fe₃O₄ (Magnetit), kubisch

Naturmagnete sind im Erd-Magnetfeld erstarrte kristalline Materialien ⇒ dauerhafte Magnetisierung

$$Fe_3O_4 = Fe(A)Fe_2(B)O_4 = [Fe^{3+}]^{tet}[Fe^{2+}Fe^{3+}]^{okt}O_4$$

[Ar]3d⁵ h.s.



 $S = 0 \quad [Fe^{3+}]^{tet} - O - [Fe^{3+}]^{okt}$

Fe(A)

Fe(B

[Ar]3d⁵ h.s.

 $[Ar]3d^6 h.s.$

$$\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$$

 $S = 4/2 \rightarrow Magnetisierung!$

Für $T < T_c$:

Parallele Ausrichtung der Spins in einer Domäne

Verhalten von Materie im Magnetfeld: Zusammenfassung und Beispiele

Magnetisierungsarten

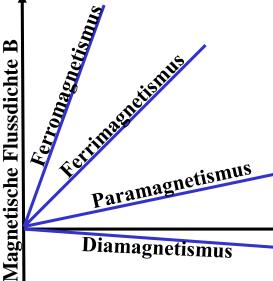
Diamagnetismus

Bi, Cu, Ag, Au, Al₂O₃

Paramagnetismus

Al, Ti, Cu-Legierungen

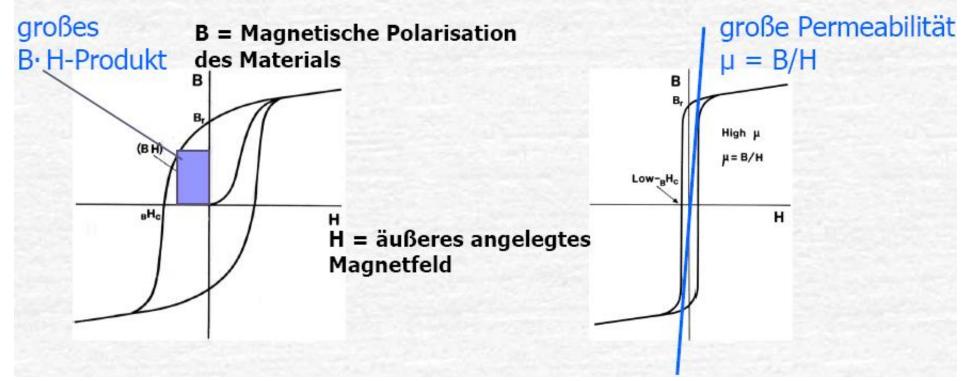
• Ferromagnetismus


Fe, Co, Ni, Gd, γ-Fe₂O₃

Antiferromagentismus

Mn, Cr, MnO, NiO, α-Fe₂O₃

• Ferrimagnetismus


Ferrite, Granate, Fe_3O_4

Magnetische Feldstärke H

Anwendung der Magnetisierungskurve

Größe und Form der Hystereseschleife bestimmen das Verhalten von Stoffen im Magnetfeld und damit ihren Anwendungsbereich (H_c = Koerzitivfeldstärke)

Hartmagnete: Energiespeicher, Kraftquellen

Weichmagnete: Sensoren, Trafobleche

Funktionsmaterialien Prof. Dr. T. Jüstel

Anwendung und Eigenschaften von weichmagnetischen Werkstoffen

⇒ Spulenkerne von Elektromagneten, Elektromotoren, Transformatoren, Generatoren, ...

Da hier Wechselstrom eingesetzt wird, wird die Hystereseschleife wiederholt durchlaufen

⇒ Weichmagnetische Stoffe werden bevorzugt eingesetzt

Weichmagnetische Stoffe besitzen folgende Eigenschaften

- hohe Sättigungsmagnetisierung
 - ⇒ Magnet weist hohe Flussdichte auf
- große Permeabilität
 - ⇒ schwaches Magnetfeld reicht aus, um die Sättigung zu erreichen
- kleine Koerzitivfeldstärke
 - ⇒ Umorientierung der Domänen erfolgt bei kleiner Feldstärke
- kleine Remanenz
 - ⇒ ohne äußeres Feld bleibt nur kleine Restmagnetisierung bestehen
- schnelle Reaktion auf hochfrequente Wechselfelder
 - ⇒ kleine Energieverluste in Folge von Dipolreibung
- niedrige elektrische Leitfähigkeit (Keramiken mit hohem Widerstand)
 - ⇒ wenig Joule'sche Verluste in Folge von Wirbelströmen

Funktionsmaterialien Prof. Dr. T. Jüstel

Magnetische Speicherwerkstoffe zur Informationsspeicherung in Magnet- und Tonbändern (magnetic tapes) sowie Disketten- und Plattenspeicher

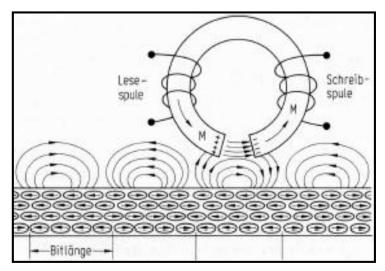
Funktionsweise von magnetischen Speicherwerkstoffen

- Magnetisierung bleibt auch ohne Magnetfeld erhalten
- Den entgegen gesetzten Magnetisierungsrichtungen entsprechen die binären Werte <u>0 und 1</u>
- Schreiben und Löschen von Informationen erfolgt durch leichte Ummagnetisierung

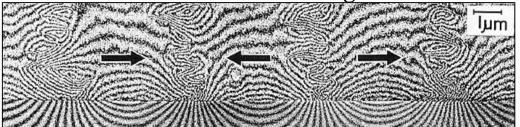
Welche Bedingungen müssen magnetische Pigmente erfüllen?

- 1. hohe Remanenz
 - ⇒ Restmagnetisierung nach Abschalten des Magnetfeldes
- 2. nadelförmige Partikel
 - ⇒ leichte Ausrichtung im Magnetfeld
- 3. kein Verlust der Magnetisierung M durch Erwärmung des Magnetbandes
 - ⇒ Hohe Curie- bzw. Néel-Temperatur
- 4. gutes Signal/Rausch-Verhältnis (Dynamik)
 - ⇒ Pigment mit möglichst kleiner Partikelgröße (einheitliche Domäne/Partikel)
- 5. Möglichkeit zur vollständigen Löschung der Magnetisierung
 - \Rightarrow Mittlere Koerzitivfeldstärke H_c (erforderliche Feldstärke zur Entmagnetisierung)

Funktionsmaterialien Prof. Dr. T. Jüstel


Magnetische Pigmente für Magnetbänder

Pigment	Anwendung	Teilchen- länge [µm]	Spezifische Oberfläche [m²/g]	Koerzitiv feld- stärke [kA/m]	Sättigungs- magnetisierung MS/δ [μTm³/kg]	M _R /M _S
γ-Fe ₂ O ₃	Studio-, Radio- Tonbänder	0,40	17 – 20	23 – 27	85 – 92	0,80 – 0,85
γ-Fe ₂ O ₃	Tonbänder (kompakt) IEC I	0,35	20 – 25	27 – 30	87 - 92	0,80 - 0,90
γ-Fe ₂ O ₃ (Co- beschichtet)	Tonbänder (kompakt) IEC II	0,30	30 – 40	52 – 57	94 - 98	0,85 - 0,92
Fe (metallisch)	8 mm Video- bänder	0,25	50 - 60	115 - 127	130 - 160	0,85 – 0,90


Funktionsmaterialien Prof. Dr. T. Jüstel

Das Tonband

Funktionsweise: Von Valdemar Poulsen auf der Pariser Weltausstellung gezeigt (1900)

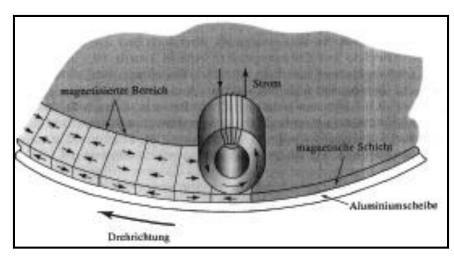
Magnetische Feldlinien auf einem mit Co beschichteten Magnetband

AEG Magnetophon (16.08.1935)

Kompaktkassette (28.08.1963)

Das Diskettenlaufwerk

Aufbau des Speichermediums

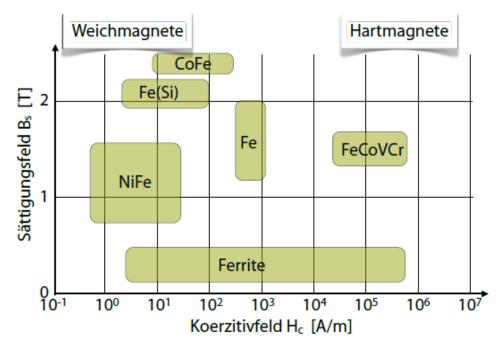

Sowohl bei Disketten- als auch Plattenspeichern trägt eine Al-Platte einen Polymerfilm mit magnetischen Partikeln

Funktionsweise

Beim Schreiben erzeugt der Strom, der durch die Spule des Kopfes fließt, ein Magnetisierungsmuster in der magnetischen Schicht

Beim Auslesen induziert das Magnetisierungsmuster in der Wicklung des Kopfes einen Strom

Für den Schreibkopf wird ein Weichmagnet, z.B. eine Fe/Ni-Legierungen (Permalloy) eingesetzt.


Lit.: D.R. Askeland, Materialwissenschaften, Spektrum-Verlag 1996

Anwendung und Eigenschaften hartmagnetischer Werkstoffen

Hartmagnetische Werkstoffe werden in Permanentmagneten eingesetzt und müssen folgende Eigenschaften aufweisen:

- hohe Remanenz
- hohe Permeabilität
- hohe Koerzitivfeldstärke
- große Hystereseschleife ⇒ große Energiedichte

Energiedichte
$$(BH)_{max} = B \cdot H$$

$$[VAs/m^3 = J/m^3]$$

$$B = magn. Flussdichte$$
 $[T = Vs/m^2]$

D.h. die Stärke eines Permanentmagneten steigt mit der Größe der Hystereseschleife bzw. mit der maximalen Energiedichte

Funktionsmaterialien Prof. Dr. T. Jüstel

Werkstoffe für Permanentmagnete

- Das Gefüge hochentwickelter Permanentmagnete ist extrem feinkörnig
 ⇒ Jeder Kristallit enthält nur eine Domäne, wodurch diese daher nicht durch Blochwände, sondern durch Korngrenzen voneinander getrennt sind
- Die Orientierung dieser Domänen durch Rotation ist energieaufwändiger als Domänenwachstum mit Blochwandverschiebung ⇒ Magnete sind schwer zu entmagnetisieren

Legierung	Koerzitivfeldstärke H _c [kA/m]	Typ. Energiedichte (BH) _{max} [kJ/m ³]
Stahl (0,9% C, 1,0% Mn)	4	1,6
Martensitischer Stahl (9% Co)	11	3,3
AlNiCo (21% Ni, 12% Al, 5% Co, Fe)	35	11
CuNiFe (60% Cu, 20% Fe, 20% Ni)	44	12
SrFe ₁₂ O ₁₉ (Magnetoplumbittyp)	260	29
SmCo ₅	760	200
Sm_2Co_{17}	720	250
Nd ₂ Fe ₁₄ B:Dy,Pr	880	360

Funktionsmaterialien Prof. Dr. T. Jüstel

Elektronkonfiguration der Lanthanoide und ihrer Kationen

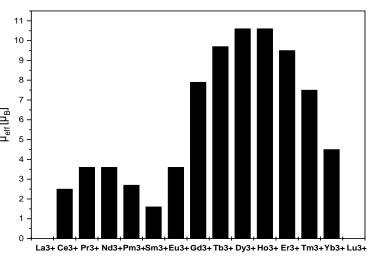
Metalle

[Xe]	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
6s	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5d	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1
4f	0	1	3	4	5	6	7	7	9	10	11	12	13	14	14

Kationen

[Xe]
$$La^{3+} Ce^{3+} Pr^{3+} Nd^{3+} Pm^{3+} Sm^{3+} Eu^{3+} Gd^{3+} Tb^{3+} Dy^{3+} Ho^{3+} Er^{3+} Tm^{3+} Yb^{3+} Lu^{3+} Ce^{4+} Pr^{4+} Nd^{4+}$$
 $Sm^{2+} Eu^{2+} Dy^{4+}$ $Tm^{2+} Yb^{2+} Tb^{4+}$
4f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ce³⁺ - Yb³⁺, Pr⁴⁺, Nd⁴⁺, Tb⁴⁺, Dy⁴⁺, Sm²⁺, Eu²⁺, Tm²⁺
$$\rightarrow$$
 paramagnetische Ionen \rightarrow ferromagnetische Ordnung (T_C < RT)

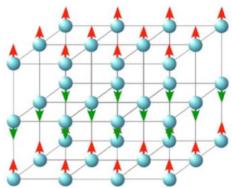

Funktionsmaterialien Prof. Dr. T. Jüstel

Werkstoffe für Permanentmagnete – Vorteile der Lanthanoide

Als Kationen stark paramagnetisch, hohe Bahnmomente

- $Gd^{3+} \Rightarrow Magnetische Kontrastmittel [Gd^{3+}(dota)]$
- $Dy^{3+}/Ho^{3+} \Rightarrow$ Maximales magnetisches Moment!

$[\mu_{ m B}]$ $\mu_{ m exp.}[\mu_{ m I}]$
10,63
10,4
7,98
5,7-6,0



Als Metalle bzw. Legierungen ferromagnetisch

- Gd/Tb/Dy
- $Nd_2Fe_{14}B$
- SmCo₅ und Sm₂Co₁₇

Als Baustein ferromagnetischer Materialien

- $Y_3Fe_5O_{12}$ "YIG"
- Gd₃Fe₅O₁₂ "GdIG, vgl.: Gd₃Ga₅O₁₂ "GGG"

Ferromagnetische Ordnung in 4f Ferromagneten

Funktionsmaterialien Prof. Dr. T. Jüstel

Einsatzbereiche von Nd₂Fe₁₄B, SmCo₅, und Sm₂Co₁₇

Verwendung in Elektromotoren der Automobilbranche
 > 25 Stellmotoren pro Fahrzeug
 Elektrischer Antrieb & Bremsen

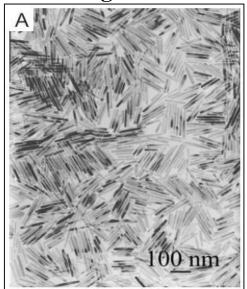
Festplatten (Hard Disk Drives HDDs)
 Magnete: 2 wt-% der HDD
 Seltene Erden: 0,6 wt-% der HDD

Windkraftanlagen
 off-Shore: 650 kg Nd/Anlage
 ~ 100 kg/MW Leistung

Substitutionsmöglichkeiten für Nd₂Fe₁₄B, SmCo₅ und Sm₂Co₁₇

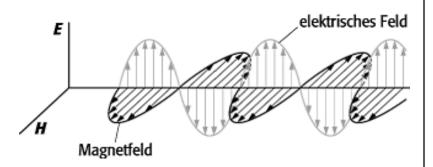
- Dauermagnete auf Basis von Eisenoxiden mit Zusätzen anderer Oxide Problem: Faktor zehn kleineres Energieprodukt (BH)_{max} als SE-Magnete.
 - ⇒ In vielen Motor- und Generatoranwendungen nicht einsetzbar!
- Nanoskalige Fe/Co-Verbindungen

Nano-Stäbchen, die sich magnetisch ordnen und in einer Matrix zu ferromagnetischen


Domänen fixiert werden

- **⇒** Technologisch sehr anspruchsvoll
- Neuartige Molekulare Magnete

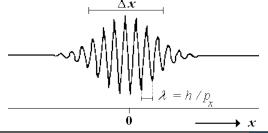
Bsp.: $[Mn_{12}O_{12}(CH_3COO)_{16}(H_2O)_4] \cdot 2CH_3COOH \cdot 4H_2O$


"Mn₁₂ac"

⇒ langfristiges Forschungsziel

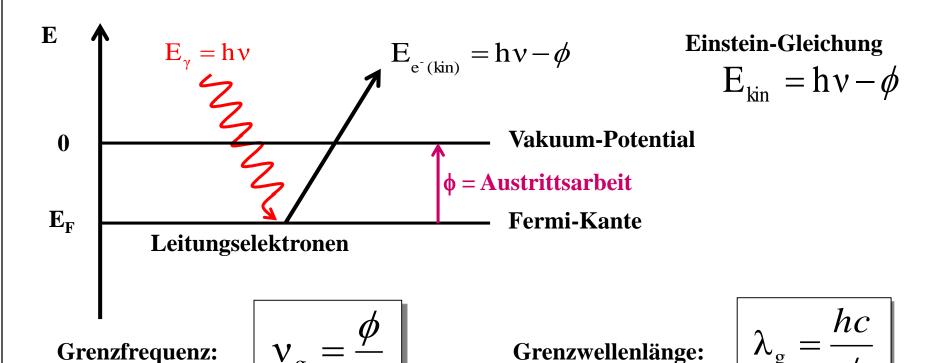
Wellentheorie des Lichts: Huygens, Fresnel, Hertz, Maxwell

→ Das Lichtfeld besteht aus einer elektrischen und einer magnetischen Feldkomponente


Aber: Das Lichtfeld kann Energie nur in Paketen

(Lichtquanten = Photonen = Lichtkorpuskeln) abgeben oder aufnehmen

→ "Welle-Teilchen-Dualismus"


Beweise für obige Hypothese

- Photonen schlagen Elektronen aus einer Elektrode, wenn deren Frequenz $\upsilon > E/h$ ist (Grenzfrequenz), da $E = h \cdot \upsilon = k_B \cdot T$ ($\upsilon = k_B \cdot T/h$) [s⁻¹]
- Die Ableitung des Planck'schen Strahlungsgesetzes für die Hohlraumstrahlung basiert auf der Quantisierung der Energie des Lichtfeldes (Planck 1900)
- → Elektromagnetische Strahlung besteht aus Wellenpaketen (Photonen) mit diskreter Energie E und Impuls p

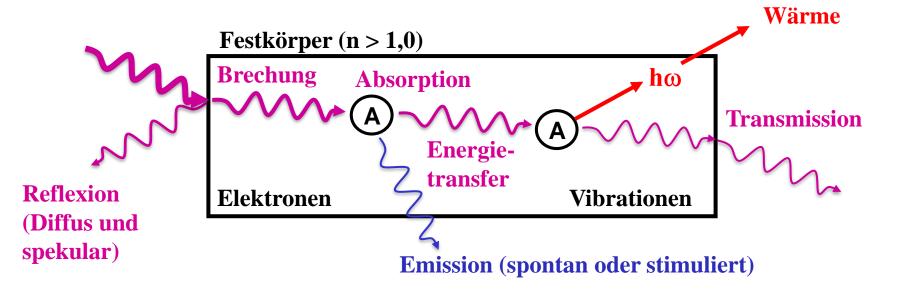
Photoelektrischer Effekt: Einstein 1905 → Nobelpreis 1921

Licht ist in Photonen mit der Energie hv quantisiert. Diese Quantisierung ist fundamental und hängt nicht mit der Quantisierung harmonischer Oszillatoren, wie bei der Planck'schen Erklärung der Hohlraumstrahlung, zusammen.

Funktionsmaterialien Prof. Dr. T. Jüstel

Die optischen Eigenschaften eines Stoffes werden durch seine Wechselwirkung mit elektromagnetischer Strahlung bestimmt

Makroskopische Phänomene

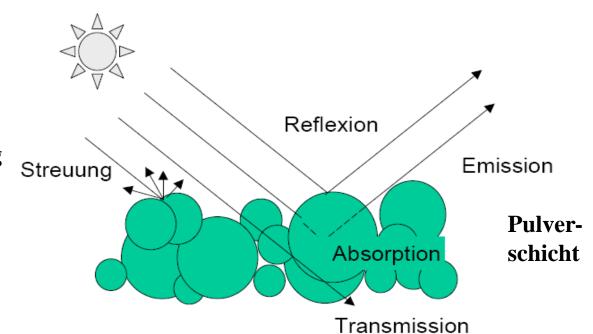

• Absorption → Lumineszenz, Wärme, Ladungstrennung oder -speicherung

• Transmission einschließlich Brechung

Reflexion diffus und spekular

Spontane Emission durch virtuelle Photonen

• Stimulierte Emission durch eingestrahlte Photonen


Funktionsmaterialien Prof. Dr. T. Jüstel

Makrosk. Wechselwirkungen zwischen elektromagnetischer Strahlung und Materie

Absorption A Aufnahme elektromagnetischer **Energie durch ein Medium**

Transmission T **Energiedurchgang von Strahlung**

Reflexion R (diffus+ gerichtet) Einfallende Strahlung wird nach dem Reflexionsgesetz zurückge-Strahlt oder gestreut

$$\mathbf{A} + \mathbf{T} + \mathbf{R}_{\mathbf{diff.}} + \mathbf{R}_{\mathbf{spek.}} = \mathbf{1}$$

$$A + T + R_{diff.} + R_{spek.} = 1$$
 $E + T + R_{diff.} + R_{spek.} = 1$ (Kirchhoff)

Absorptionsgrad A Transmissionsgrad T Reflexionsgrad R

Verhältnis von absorbierter Strahlung zur gesamten empf. Strahlung Anteil der Strahlung, die ein Objekt durchdringt Verhältnis von reflektierter Strahlung, d.h. gerichteter (Spekularrefl.) und diffuser (Streuung) zur gesamten empfangenen Strahlung

Funktionsmaterialien Prof. Dr. T. Jüstel

Mikrosk. Wechselwirkungen zwischen elektromagnetischer Strahlung und Materie

Phy	vsikalische Proz	zesse und Strahlun	igsarten (nach	abnehmender	Energie aufgelistet)
	y Dillectio Cite I I Of	sesse und strumun	Sour com (mace)	i aniidiiiidiiadi	Elici Sie dai Schistet)

Kernanregung	Gammastrahlung	Mößbauereffekt
ixei mann egung	Gaiiiiiasti ailiulig	Midispauci Ci

Kernspaltung, Kernfusion

Anregung innerer Elektronen Röntgenstrahlung Röntgenfluoreszenz (XRF)

Röntgenbeugung (XRD)

Anregung äußerer Elektronen UV/Vis-Strahlung Farbe und Lumineszenz

Photochemie, Streuung, Beugung, Photoleitung

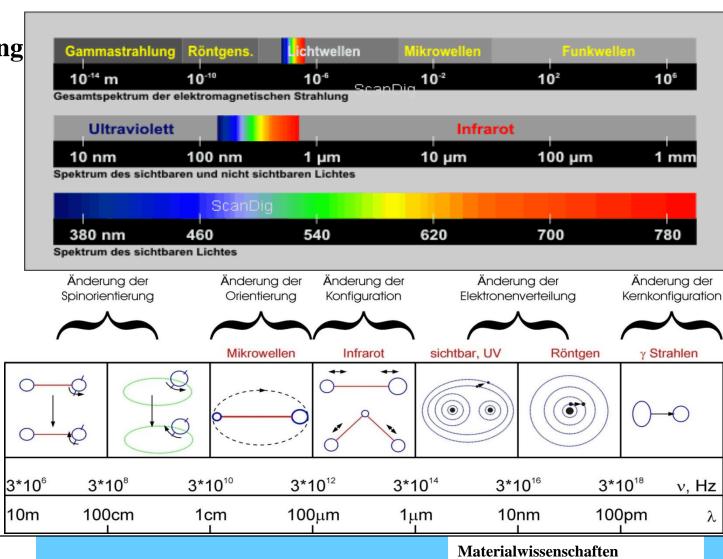
Schwingungsanregung IR-Strahlung Molekülvibrationen

Festkörperphononen

Rotationsanregung Mikrowellen Molekülrotationen

Kernspinanregung Radiowellen ESR und NMR, MRT

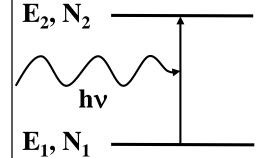
Funktionsmaterialien Prof. Dr. T. Jüstel


Strahlungsarten und physikalische Prozesse

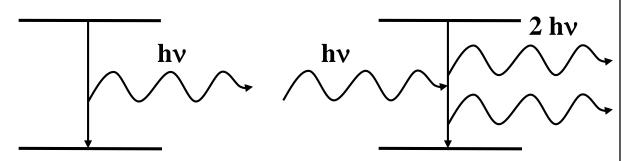
Ionisierende Strahlung (< 10 nm)

Optische Strahlung (10 nm – 100 µm)

Sichtbares Licht (380 – 780 nm)


Funkwellen (> 100 µm)

Funktionsmaterialien Prof. Dr. T. Jüstel


Mikrosk. Wechselwirkungen zwischen elektromagnetischer Strahlung und Materie

Absorption (induziert)

$$(dN_1/dt)_{ind} = -B_{12}*N_1*u(v)$$

Spontane Emission (Vakuum) Induzierte Emission

$$(dN_2/dt)_{spont.} = -A_{21}*N_2*u(v)$$

$$(dN_2/dt)_{ind.} = -B_{21}*N_2*u(v)$$

mit
$$A_{21}$$
, B_{12} , B_{21} = Einstein-Koeffizienten, $u(v)$ = Energie

$$g_1B_{12}=g_2B_{21}$$
 mit $g_1, g_2=$ Entartung $B_{21}=A_{21}\cdot\lambda^3/8\pi h$ d.h. Abklingzeit $\tau\sim\lambda^3$

Erhaltungssätze

- 1. Energieerhaltung: $hv = E_2 E_1 = \Delta E$
- 2. Impulserhaltung: $h/\lambda = \pm 1 = \Delta l$

Die Übergangswahrscheinlichkeit bzw. die Intensität der Übergänge hängt von Auswahlregeln für elektrische Dipolstrahlung ab!

Absorption optischer Strahlung: Elektronische Übergänge

Ausgewählte Auswahlregeln für elektrische Dipolübergänge

1. Spinauswahlregel

$$\Delta S = 0$$

2. Bahnmoment

$$\Delta l = +/-1, \Delta m_l = 0, +/-1$$

3. Laporte Auswahlregel

$$g \rightarrow u, u \rightarrow g$$
, aber nicht $g \rightarrow g, u \rightarrow u$

mit Russel-Saunders Kopplung

$$\Delta L$$
, $\Delta J = 0$, +/-1, aber nicht $J = 0 \rightarrow J = 0$

Typ		ε [lmol ⁻¹ cm ⁻¹]	Beispiel	Elektron von	nach
s-p Übergänge	$\Delta l = 1$	$10^3 - 10^4$	Na^0	3 s	\rightarrow 3p
d-d Übergänge	$\Delta l = 0$	$< 10^{2}$	Cr^{3+}	3d	\rightarrow 3d
f-d Übergänge	$\Delta l = 1$	$10^4 - 10^5$	Ce^{3+}	4f	\rightarrow 5d
f-f Übergänge	$\Delta l = 0$	$< 10^{2}$	Pr^{3+}	4f	\rightarrow 4f
			Eu ³⁺	4f	\rightarrow 4f
			Gd^{3+}	4f	\rightarrow 4f
			Tb ³⁺	4f	$\rightarrow 4f$

Funktionsmaterialien Prof. Dr. T. Jüstel Materialwissenschaften Folie 129

Russell-Saunders Kopplung

 $\mathbf{J} = |\mathbf{L} + \mathbf{S}| \dots |\mathbf{L} - \mathbf{S}|$

Terme (Energieniveaus)

 $S = \Sigma s_i$

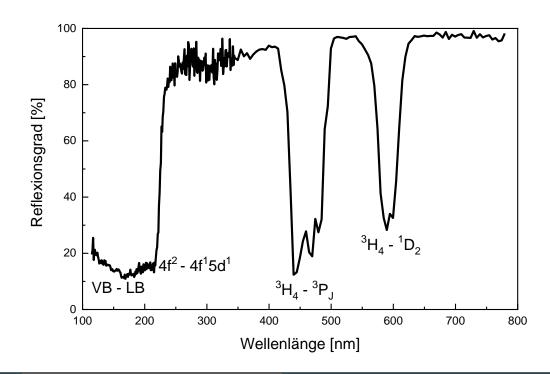
 $^{2S+1}L_{J}$

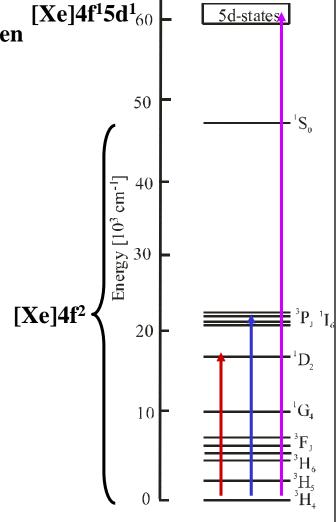
Absorption optischer Strahlung: Weitere elektronische Übergänge

Funktionsmaterialien

Prof. Dr. T. Jüstel

Тур	ε [lmol ⁻¹ cm ⁻¹]	Beispiel	Elektron von nac	<u>h</u>
Bandübergänge	$10^5 - 10^6$	TiO ₂	$\mathrm{O}^{2\text{-}} o \mathrm{Ti}^{4\text{+}}$	$VB \rightarrow LB$
CT Übergänge	$10^4 - 10^6$	$\mathrm{WO_4}^{2-}$	$\mathrm{O}^{2 ext{-}} o \mathrm{W}^{6 ext{+}}$	LMCT
		MnO ₄ -	$\mathrm{O}^{2\text{-}} o \mathrm{Mn}^{7\text{+}}$	LMCT
		$Fe(CO)_5$	$Fe^0 \rightarrow CO$	MLCT
		KFe[Fe(CN) ₆]	$Fe^{2+} \rightarrow Fe^{3+}$	MMCT
		$[(cp)_2 Zr(biq)]^{2+}$	$cp \rightarrow biq$	LLCT
$\sigma \rightarrow \sigma^*$	$> 10^3$	CH_4	$HOMO \rightarrow LUMO$	0
$ \begin{array}{ccc} \sigma & \rightarrow \sigma^* \\ \pi & \rightarrow \pi^* \end{array} $	$10^4 - 10^6$	Butadien	$HOMO \rightarrow LUMO$	0
$n \rightarrow \pi^*$	$10^1 - 10^2$	$(CH_3)_2C=O$	$HOMO \rightarrow LUMO$	0
0,40 0,35 in VE Wasser 0,30 - 0,25	0,6 — CrCl ₃ 0,02 — in VE Wasser 0,4 — 0,3 — 0,1 — 0,0 — 0	5 mol/L 500 600 700 800	1.4 - 1.2 - 1.2 - 1.2 - 1.3 - 1.4 - 1.2 - 1.2 - 1.3 - 1.4 - 1.2 - 1.2 - 1.3 -	
Wellenlänge (nm)		Wellenlänge (nm)	vveilen	länge / nm

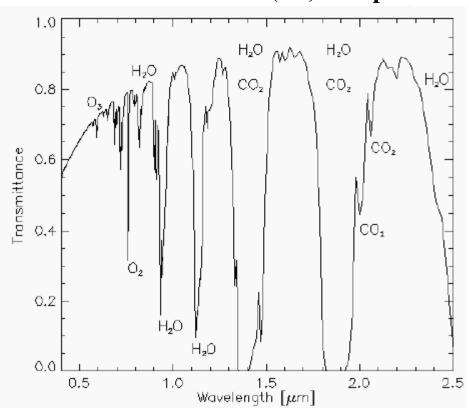

Materialwissenschaften

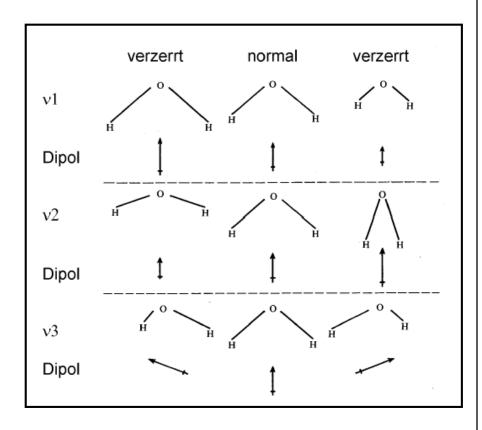

Folie 130

Absorption optischer Strahlung: Elektronische Übergänge

PrPO₄ als Bsp. für ein Material mit mehreren Absorptionstypen

- 1. $[Xe]4f^2 [Xe]4f^2$ Übergänge (450 und 580 nm)
- 2. [Xe]4f² [Xe]4f¹5d¹ Übergang (210 nm)
- 3. VB LB Übergang (~150 nm)


Pr³⁺


Funktionsmaterialien Prof. Dr. T. Jüstel

Absorption optischer Strahlung: Vibronische Übergänge

Beispiel: Absorption von Licht durch die Atmosphäre (Absorbierende Gase: CO₂, H₂O, O₃)

Fourier-Transformations (FT)-IR-Spektrum

Funktionsmaterialien Prof. Dr. T. Jüstel

Konversion der absorbierten Energie

• Solarthermie Strahlung → Thermische Energie Farbpigmente

Solarkollektoren

• Lumineszenz Strahlung \rightarrow Licht Lichtquellen

Laser

Szintillatoren

Diagnostik

Optische Aufheller, Marker

• Photovoltaik Strahlung → Elektrische Energie Solarzellen

• Photosynthese Strahlung → Chemische Energie Autotrophe Organismen

Photobiologie und -chemie

Speicherung Strahlung \rightarrow Ladungsträger Nachleuchtpigmente

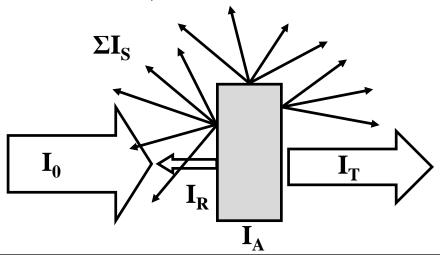
Detektoren

Optische Speicher

Funktionsmaterialien Prof. Dr. T. Jüstel

Transmission: Klassifizierung von Materialien

- 1. Transparente (klare) Materialien
- hohe Transmission
- vernachlässigbare Reflexion und Absorption
- 2. Transluzente (trübe) Materialien
- hohe Transmission, aber starke Streuung
- Licht wird diffus transmittiert
- 3. Opake (undurchsichtige) Materialien
- hohe Reflexion und Absorption
- vernachlässigbare Transmission


Transmissionsgrad $T = I/I_0$ mit $I = I_0 \cdot e^{-\mu \cdot d}$

Extinktion
$$E = -lg(I/I_0) = lg(I_0/I) = lgO$$

mit $O = Opazität$

Einkristalle, transparente Keramik

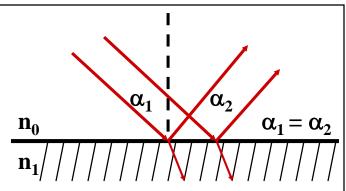
Milchglas, Nanopulverschichten

Keramik, dicke Pulverschichten

Reflexion: Spekular (Gerichtet, Regulär)

Reflexion an einer polierten Fläche in eine Richtung (spiegelnde Oberfläche)

1. Fall: Nicht-absorbierende Materialien

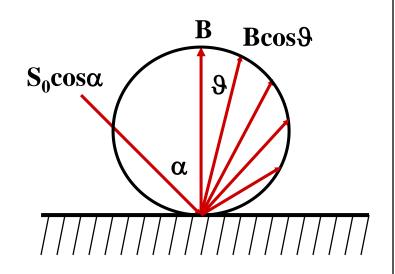

$$R_{reg} = \frac{(n_1 - n_0)^2}{(n_1 + n_0)^2}$$

2. Fall: Absorbierende Materialien

$$R_{reg} = \frac{(n_1 - n_0)^2 + (n_1 k_1)^2}{(n_1 + n_0)^2 + (n_1 k_1)^2} \quad \text{mit } n = \text{Brechungsindex} \\ k = \text{Absorptionsindex}$$

Ergebnis

Aus einem (spekularen) Reflexionsspektrum lässt sich das Absorptionsspektrum berechnen, wenn das Reflexionsspektrum über den gesamten Bereich des elektromagnetischen Spektrums bekannt ist \rightarrow Kramers-Kronig-Transformation


Substanz Brechun	gsindex n _D
Vakuum	1,000
Luft	1,0003
$H_2O(s)$	1,309
$H_2O(1)$	1,333
CaF ₂ (Flussspat)	1,434
SiO ₂ (Glas)	1,46
SiO ₂ (Quarz)	1,55
Al ₂ O ₃ (Saphir)	1,76
$Y_3Al_5O_{12}(YAG)$	1,83
Y ₂ O ₃ (Bixbyit)	1,90
ZrSiO ₄ (Zirkon)	1,923
Diamant	2,417
Bleiglas	2,50

Reflexion: Diffus (Irregulär)

Reflexion an einer nicht-polierten Fläche in alle Richtungen des Halbraumes (matte Oberfläche)

Beschreibung durch die Kubelka-Munk-Theorie

- setzt optisch unendlich dickes Pulver voraus
- gilt f
 ür diffuse Bestrahlung und diffuse Remission, d.h. die gerichtete Reflexion muss eliminiert werden
- Grundvorstellung: Die Probe besteht aus infinitesimal dünnen Schichten, die von oben und unten bestrahlt werden und das Licht durch Absorption und Streuung schwächen

$$f(R) = \frac{\left(1 - R\right)^2}{2R} = \frac{1}{s} \varepsilon c$$

mit

R = Grad der diffusen Reflexion

s = Streukoeffizient

c = Konzentration der Absorber

 $\varepsilon = Absorptionskoeffizient$

Frequenzabhängigkeit der optischen Eigenschaften

Das Refraktions-, Transmission-, Reflexions- und Absorptionsvermögen eines Materials ist mehr oder weniger stark frequenzabhängig ⇒ Dispersion

Makroskopisch werden sie durch den Brechungsindex n(v) beschrieben (Vakuum: n(v) = 1,0)

$$n(v) = \frac{c_0}{c_1(v)} = \frac{\lambda_1(v)}{\lambda_0}$$

Im Medium breitet sich die elektromagnetische Welle infolge Polarisation der Elektronen mit kleinerer Geschwindigkeit als im Vakuum aus

$$c_1(v) = \frac{1}{\sqrt{\mu(v)\varepsilon(v)}}$$

Für nicht magnetische Materialien gilt somit $c_1(v) = \frac{1}{\sqrt{\varepsilon(v)}}$

$$c_1(v) = \frac{1}{\sqrt{\varepsilon(v)}}$$

Der Zusammenhang zwischen Permittivität und Brechungsindex ergibt sich somit zu

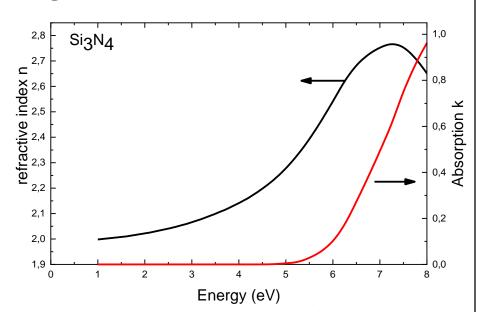
$$n(v) = \frac{c_0}{c_1(v)} = \sqrt{\frac{\mu(v)\varepsilon(v)}{\mu_0(v)\varepsilon_0(v)}} = \mu_r(v)\varepsilon_r(v)$$

bzw. für nicht magn. Stoffe $n(v) = \sqrt{\varepsilon_r(v)}$

$$n(v) = \sqrt{\varepsilon_r(v)}$$

Frequenzabhängigkeit der optischen Eigenschaften

Der Brechungsindex eines Materials muss somit immer für eine bestimmte Frequenz angegeben werden

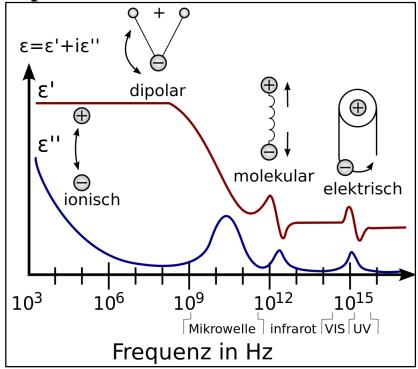

⇒ Häufig wird die Frequenz der Natrium-D-Linie gewählt (589,3 nm)

Mittelwert von 589,0 und 589,6 nm

Die elektromagnetische Welle polarisiert die Elektronen des Mediums

⇒ elektronische Polarisation

(Beispiel: Siliciumnitrid Si₃N₄)


Die Stärke der Wechselwirkung zwischen Photonen und Elektronen hängt somit von der Polarisierbarkeit der Elektronen ab

- ⇒ Materialien mit hoher (Elektronen)Dichte haben einen hohen Brechungsindex (Bleiglas)
- ⇒ Materialien mit niedriger Bandlücke haben einen hohen Brechungsindex (TiO₂, ZnS)

Funktionsmaterialien Prof. Dr. T. Jüstel

Frequenzabhängigkeit der optischen Eigenschaften

Bei niedrigen Frequenzen (IR-Bereich) dominiert die Ionenpolarisation (Schwingungen) die Wechselwirkung von Festkörpern mit Photonen

Bei sehr hohen Frequenzen wird die Wechselwirkung zwischen Photonen und Elektronen zunehmend schwächer, so dass der Brechungsindex gegen 1 geht

 \Rightarrow n = 1 für Röntgen- und Gammastrahlung \Rightarrow keine Brechung oder Streuung

Funktionsmaterialien Prof. Dr. T. Jüstel

Frequenzabhängigkeit der optischen Eigenschaften

Mikrowellenbereich (Radarstrahlung)

- Absorption: Materialien mit der Möglichkeit zur Orientierungspolarisation oder leicht polarisierbare Elektronen
 - Leitende Polymere
 - Ferrimagnetika (Radar-Shield \rightarrow Paint it Black Bird: Lockheed SR-71, 1966-1998)
- Transmission bzw. Reflexion
 - Keramiken
 - Polymere

<u>Infrarotbereich (Wärmestrahlung)</u>

- Absorption: Molekülschwingungen oder Ionenpolarisation
- Transmission bzw. Reflexion
 - Materialien mit niedrigen Phononenfrequenzen,
 z.B. Halogenide (Fluoride), Sesquioxide oder Granate

<u>Sichtbarer Spektralbereich (Optische Strahlung)</u>

• Absorption: Elektronenpolarisation bzw. Elektronenübergänge

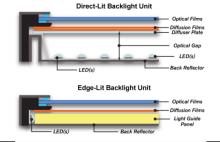
Funktionsmaterialien Prof. Dr. T. Jüstel

Anisotropie des Brechungsindexes

Der Brechungsindex n kann richtungsabhängig bzw. anisotrop sein ⇒ Kristalle mit niedriger Symmetrie (CaCO₃, Calcit)

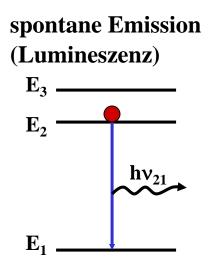
Durch Variation von n mit der Polarisationsrichtung des elektrischen Feldes entsteht Doppelbrechung

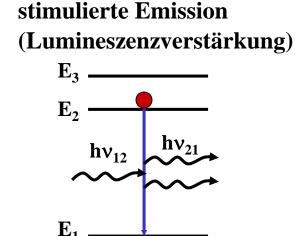
Die optischen Eigenschaften von Substanzen mit anisotropen Brechungsindex können durch Anlegen einer (hohen) Spannung beeinflusst werden


Anwendungen

- In der Pockelszelle: Elektrooptischer Modulator, der durch Anlegen einer Spannung die Polarisationsrichtung von Licht beim Durchtritt verändert (optischer Schalter) LiNbO₃, KH₂PO₄, (NH₄)H₂PO₄, \(\beta\)-BaB₂O₄
- LC Bildschirme: Schalten von Licht durch Polarisation mittels Flüssigkristallen (Liquid Crystals)

Calcit-Kristall (oben)
Demonstration der
Doppelbrechung(unten)





Absorption und Emission

Licht interagiert also mit den Elektronen der Atome. Durch die Wechselwirkung eines Lichtquants mit einem Elektron kann dieses absorbiert oder verstärkt werden. Entscheidend ist der Energiezustand des Elektrons.

Absorption $E_{3} = \frac{hv_{12}}{hv_{12}}$

Umwandlung von Strahlung oder andere Energieformen in sichtbares Licht oder UV-Strahlung wird als Lumineszenz bezeichnet

<u>Light Amplification by Stimulated Emission of Radiation (Laser)</u>

Kurze (Geschichte der Lasertechnologie					
1917	theoretische Grundlagen (A. Einstein, D)					
1954	erster Mikrowellenlaser: Maser (C. H. Townes, USA)					
1960	erste gepulste Lasertätigkeit in Rubin-Festkörperlaser nachgewiesen					
	(T.H. Maiman, USA), US Patent 2,929,922 durch Bell Labs					
1961	erster Nd-Glas-Laser und erste medizinische Laserbehandlung					
1962	N. Holonyak, jr., GE publiziert Arbeit zur roten Ga(As,P) Laserdiode					
1964	erster cw CO ₂ -Laser					
1966	erster durchstimmbarer Farbstofflaser, der mit einem Rubinlaser gepumpt wird					
1965	erster Einsatz des Lasers zum Bohren von Diamant (Herziger, D)					
1969	erste Bearbeitungsanlage zum Bohren von Uhrensteinen (Herziger, D)					
1978	erste Laserschneidanlage in einem Unternehmen					
1995	erster Hochleistungsdiodenlaser zum Härten					
2002	erster Hochleistungsfaserlaser zum Schweißen					
2016	(In,Ga)N Diodenlaser mit 50% Effizienz (Soraa, CA, USA)					
Anme	Anmerkung: Laserstrahlung ist die Energieform mit dem höchstmöglichen "Ordnungsgrad"					
	bzw. der "minimalen Entropie" sowie der "höchsten Kohärenz"					

Funktionsmaterialien Prof. Dr. T. Jüstel

Materialien für Festkörperlaser

1. Aktives Medium

- Einkristalle oder transparente Keramiken

Oxide: Al₂O₃, Y₃Al₅O₁₂, Lu₃Al₅O₁₂, BeAl₂O₄, YAlO₃, YVO₄, GdVO₄, CaWO₄, KYW₂O₈

Fluoride: MgF₂, CaF₂, BaY₂F₈, LiCaAlF₆, LiYF₄, KY₃F₁₀

- Gläser: Phosphate und Silikate
- Das Wirtsmaterial muss sehr gute optische, mechanische und thermische Eigenschaften besitzen (Welche?)

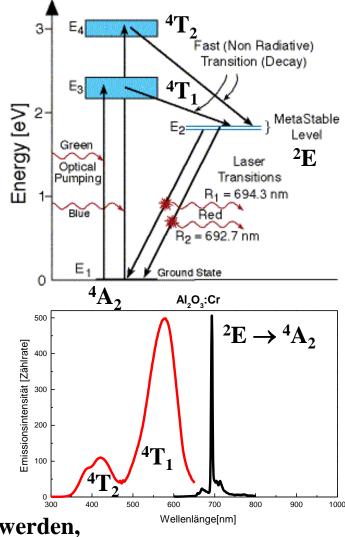
2. Dotierungen

- Übergangsmetallionen

Cr³⁺ (z.B. im Rubinlaser), Ti³⁺ (z.B. im Titan-Saphirlaser), U³⁺

- Ionen der seltenen Erden (Lanthanoidionen)

- Dichte der laseraktiven Dotierungen: 10^{19} cm⁻³ (höher als bei Gaslasern: $10^{15} 10^{17}$ cm⁻³)
 - → höhere Leistungsdichten möglich


Der Rubinlaser (Al₂O₃:Cr)

Durch Blitzlichtlampenanregung im blauen und grünen Spektralbereich erfolgt die Anregung des Cr³⁺ [Ar]3d³ (Pumpen)

Die Lebensdauer der ⁴F_J Zustände ist sehr kurz, wobei durch Spin-Bahn-Kopplung Relaxation in das metastabile ²E-Niveau stattfindet (ISC)

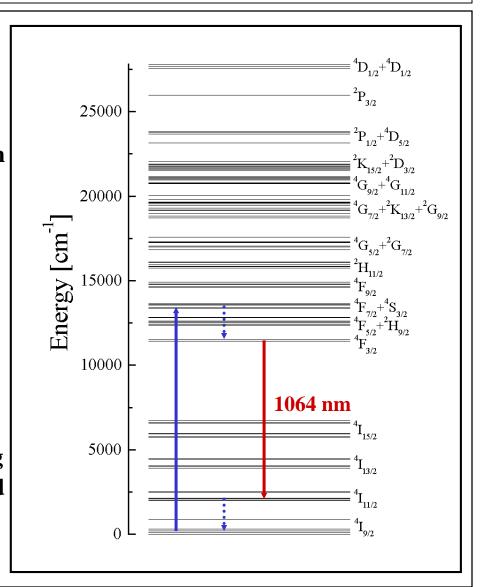
Die Besetzung des ²E-Niveaus nimmt zu bis Besetzungsinversion vorliegt

Weitere Einstrahlung eines Photons führt zur stimulierten Emission und zur vollständigen Entleerung des ²E-Zustandes

3-Niveau-Laser: Mehr als 50% der Atome müssen angeregt werden, damit es zu einer Besetzungsinversion und Lichtverstärkung kommt

Der YAG:Nd Laser (Y₃Al₅O₁₂:Nd)

Wichtigster kommerzieller Festkörper-LASER


Anregung durch Dioden oder durch Blitzlampen

4-Niveau-LASER

Aufspaltung der ^{2S+1}L_J Multipletts in Stark-Niveaus durch das starke Kristallfeld im YAG

Nd³⁺: [Xe]4f³

Allerdings ist die Aufspaltung relativ klein, da die 4f-Elektronen durch die äußeren, vollständig besetzten Schalen ($5s^2$ und $5p^6$) abgeschirmt sind $\sim 200 - 240$ cm⁻¹

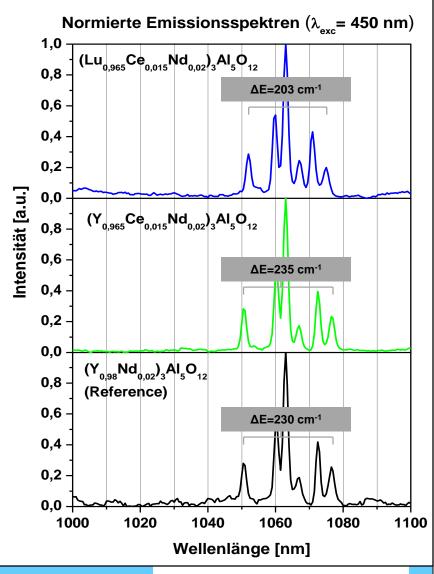
Funktionsmaterialien Prof. Dr. T. Jüstel

Der YAG:Nd Laser (Y₃Al₅O₁₂:Nd)

Stark-Aufspaltung des Übergangs ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ des Nd³⁺ in Granaten des Typs LnAG durch die Art der Besetzung der dodekaedrischen Lage beeinflussbar

LuAG:Ce,Nd YAG:Nd YAG:Ce,Nd 203 cm⁻¹ 230 cm⁻¹ 235 cm⁻¹

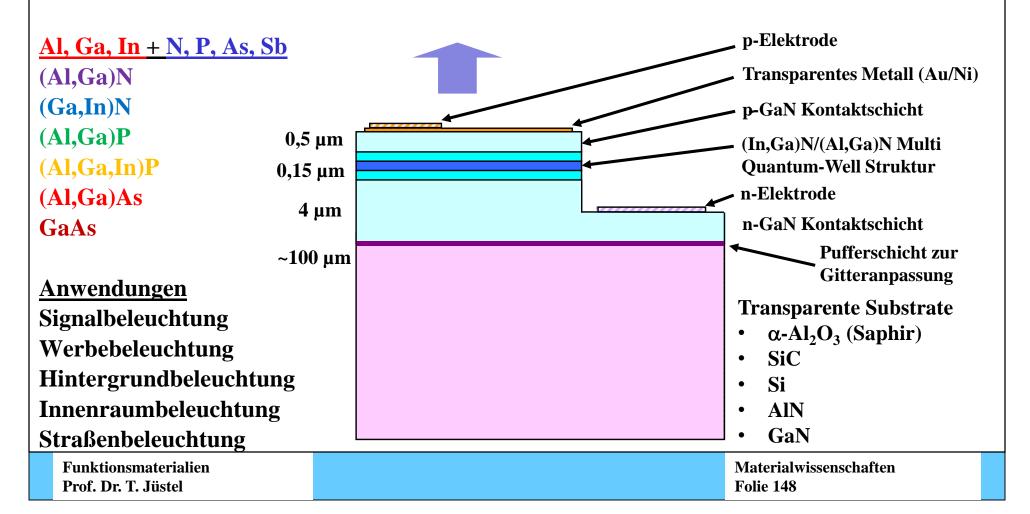
Physikalische Ursache

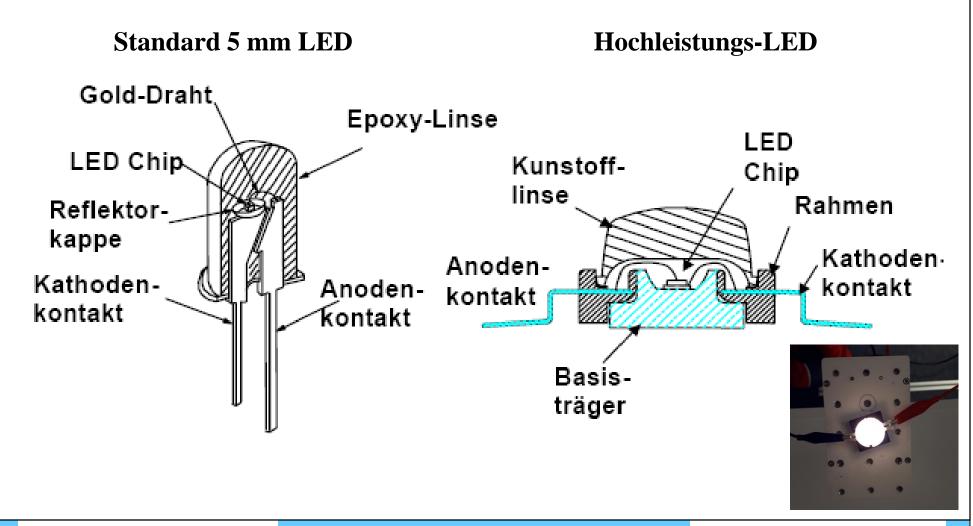

Kristallfeldaufspaltung

= f(Koordinationszahl, Symmetrie,

Ionenladungsdichte, Kation-Anion-Abstand, etc.)

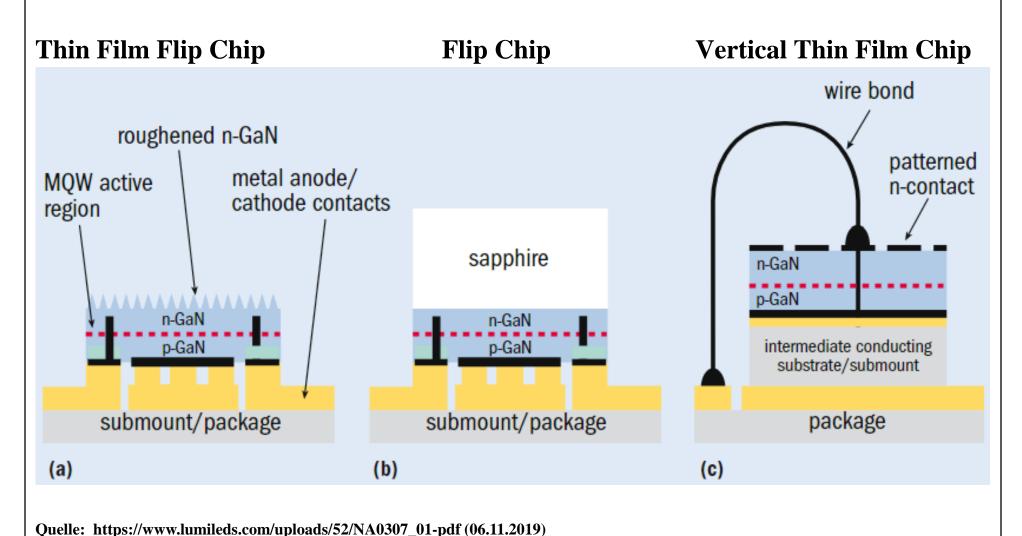
Ionenradius (Lanthanoidenkontraktion)


$$Lu^{3+} < \, Y^{3+} < \, Nd^{3+} < \, Ce^{3+}$$


Funktionsmaterialien Prof. Dr. T. Jüstel

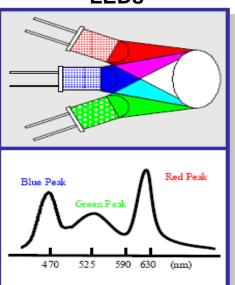
Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

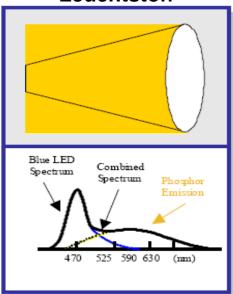
LED sind optoelektronische Bauelemente mit pn-Übergängen, bestehend aus Materialien, deren Energielücken sichtbarer Strahlung entsprechen ⇒ III/V-Halbleiter (II/VI-Halbleiter)



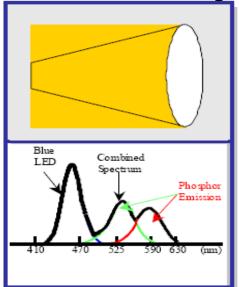
Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

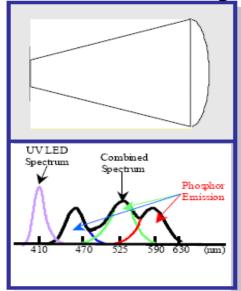
Funktionsmaterialien Prof. Dr. T. Jüstel

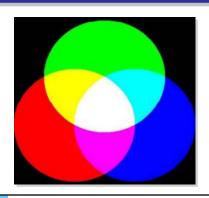

Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

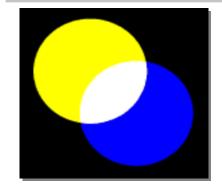

Funktionsmaterialien Prof. Dr. T. Jüstel

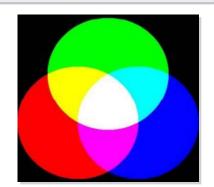
Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

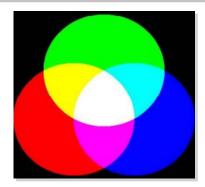

1. Rot + Grüne + Blaue 2. Blaue LED + gelber **LEDs**




Leuchtstoff




3. Blaue LED + RG 4. UV LED + RGB Leuchtstoffmischung Leuchtstoffmischung

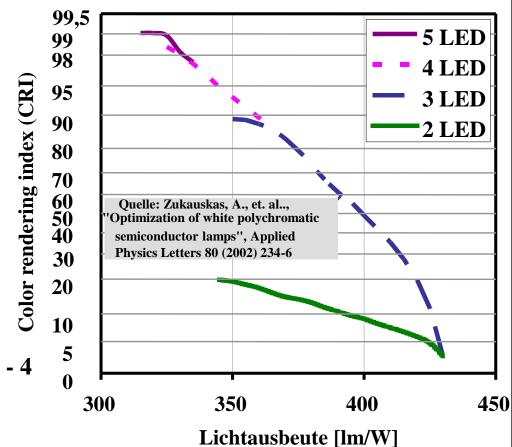


Funktionsmaterialien Prof. Dr. T. Jüstel

Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

1. Multichip LED Lampen

Schmalbandemitter

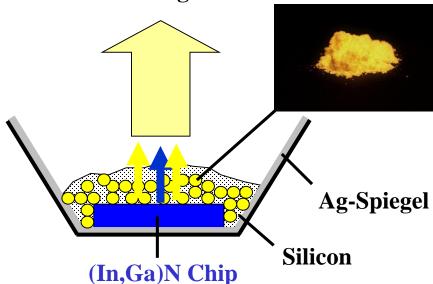

- $\lambda_{1/2} = 30 \text{ nm}$
- Alle Farben zugänglich

Theoretisches Maximum

- 430 lm/W bei
- Farbtemperatur = 4870 K
- Farbwiedergabe = 3

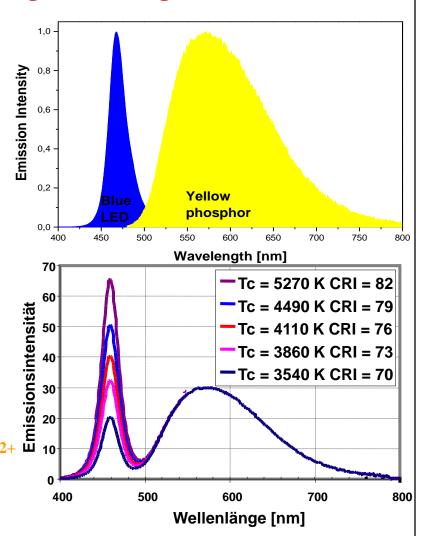
Erreichbare Werte

- ~ 350 lm/W für Farbwiedergabe 90, n = 3 4
- ~ 320 lm/W für Farbwiedergabe 99, n = 5


Probleme

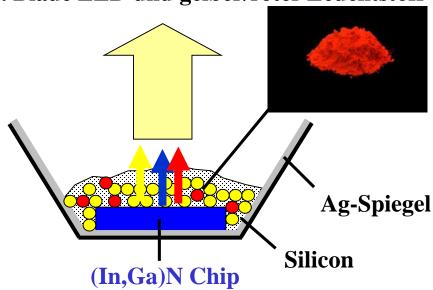
- Thermische Löschung und Sättigung der Halbleiteremission
- LED Effizienz: Red und blau hoch, grün und gelb nur moderat → Lumineszenzkonverter

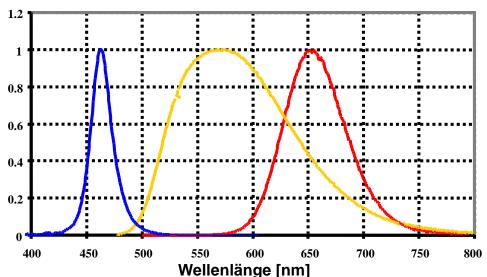
Funktionsmaterialien Prof. Dr. T. Jüstel


Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

2. Blaue LED und gelber Leuchtstoff

Komponenten und Resultate

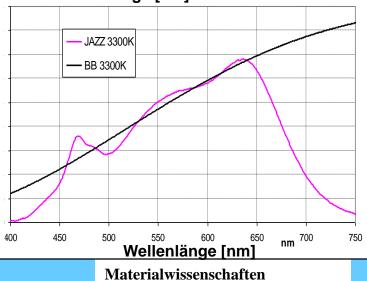

- Blaue LED (In,Ga)N Halbleiter 465 nm
- Leuchtstoffe Granate (Y,Gd,Tb)₃Al₅O₁₂:Ce³⁺ ortho-Silikate: (Ca,Sr,Ba)₂SiO₄:Eu²⁺
- Lichtausbeute 300 lm/W, Energieeffizienz > 80%!
- Farbwiedergabe 70-80, Farbtemperatur > 5000 K



Funktionsmaterialien Prof. Dr. T. Jüstel

Leuchtdioden, Licht emittierende Dioden, engl.: Light Emitting Diodes (LEDs)

3. Blaue LED und gelber/roter Leuchtstoff

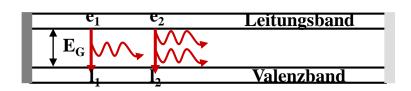


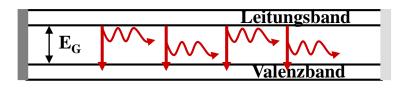
Komponenten und Resultate

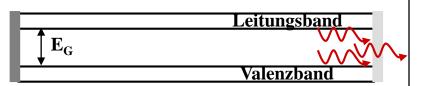
- Blaue LED (In,Ga)N Halbleiter 465 nm
- Leuchtstoffe Gelbemitter (Y,Gd,Tb)₃Al₅O₁₂:Ce³⁺

Rotemitter CaS:Eu oder CaAlSiN₃:Eu

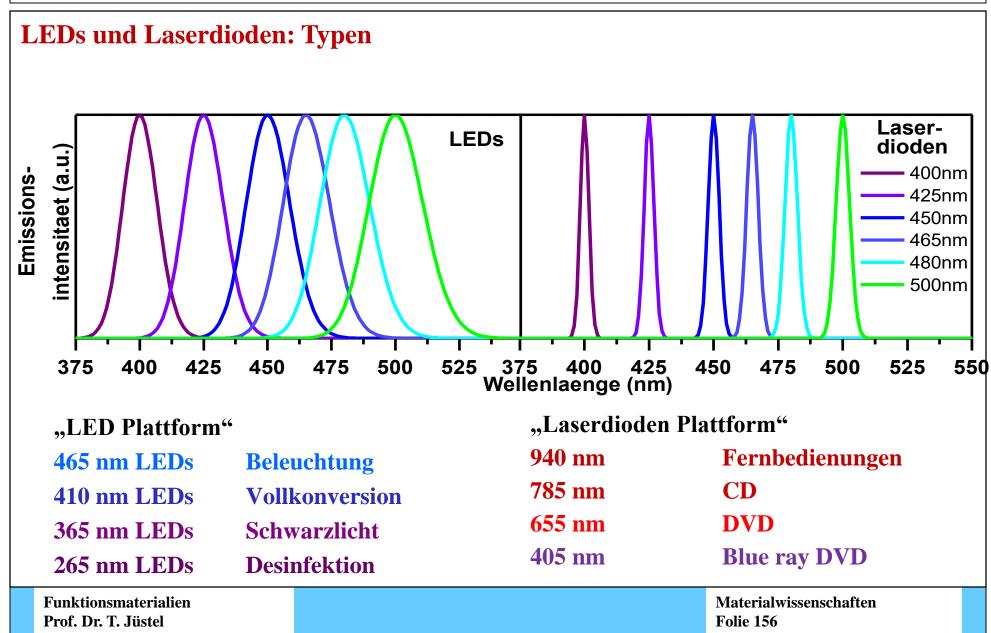
- Lichtausbeute 80-150 lm/W, Energieeffizienz 20-40%
- Farbwiedergabe 85-95, Farbtemperatur 2500-4000 K

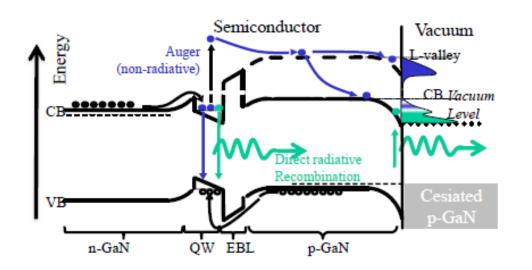


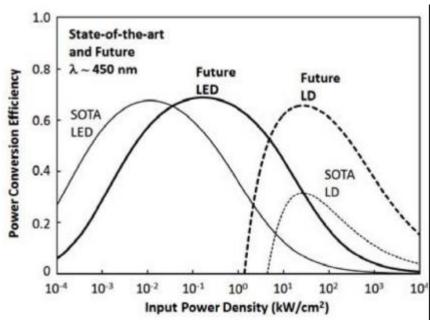

Funktionsmaterialien Prof. Dr. T. Jüstel


Halbleiterlaser oder Laserdioden

- 1. Anregung von Elektronen vom Valenz- in das Leitungsband durch eine anliegende Spannung
- 2. Elektron e₁ rekombiniert mit einem Loch l₁ und erzeugt ein Photon, das die Rekombination von Elektron e₂ mit einem Loch l₂ unter Emission eines 2. Photons stimuliert
- 3. Fortlaufende Stimulierung weiterer Emission durch reflektierte Photonen in der Diode
- 4. Am halbdurchlässigen Spiegel verlässt ein Teil der Photonen den aktiven Bereich als Laserstrahl


 $\begin{array}{c} & & & \\ Spiegel & & l \ddot{a}ssiger Spiegel \\ \downarrow & & \downarrow \\ \hline & & & Leitungsband \\ \hline \downarrow E_G & & & Valenzband \\ \hline \end{array}$


→ Resonator führt zur spektralen Fokussierung



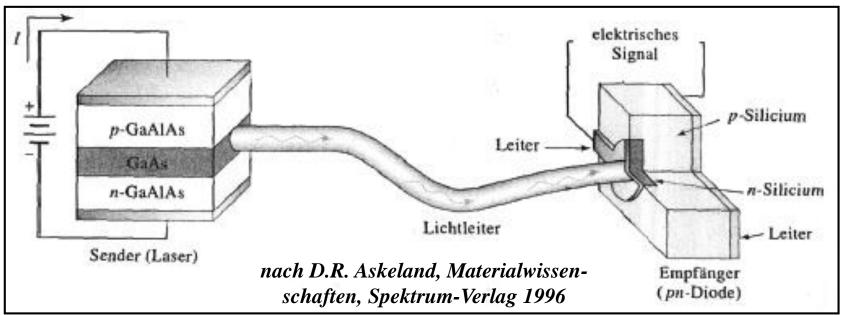
LEDs und Laserdioden: Sättigung

Bei hohen Stromdichten wird durch den Augereffekt eine Sättigung der

Elektrolumineszenz (engl.: Droop) beobachtet

Durch die stimulierte Emission in Laserdioden wird Sättigung erst bei deutlich höheren Stromdichten beobachtet: Wall plug efficiency (WPE) bis zu 70%!)

Lit.: Phys. Rev. Lett. 110 (2013) 177406, Phys. Stat. Solidi C 11 (2014) 674


Lichtleitsysteme zur Informationsübertragung

Signalerzeugung

Einem Laserstrahl werden Informationen aufgeprägt, indem man mittels der angeregten Spannung die Strahlintensität moduliert. Der modulierte Laserstrahl gelangt in den Lichtleiter und wird darüber zum Empfänger geleitet.

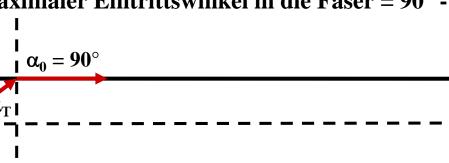
Signalempfang

Die Funktionsweise des Empfängers beruht auf dem photoelektrischen Effekt. Bei anliegender Spannung fließt ein Strom der proportional zur einfallenden Strahlungsintensität ist und der weiter verstärkt wird.

Funktionsmaterialien Prof. Dr. T. Jüstel

Lichtleitsysteme zur Informationsübertragung

Die Lichtleitung in Gläsern beruht auf der Totalreflexion von Licht, d.h. einem Effekt, der sich aus der Snellius-Gleichung ableiten lässt:


$$n_0 \cdot \sin \alpha_0 = n_1 \cdot \sin \alpha_1$$

Totalreflexion tritt beim Übergang von einem $\,$ optisch dichteren in ein optisch dünneres Medium auf, wenn der Grenzwinkel α_T überschritten wird

Grenzwinkel: $\alpha_1 = \arcsin(n_0/n_1)$ $n_0 \sim 1.0$ für Luft, $n_1 \sim 1.5$ für Normalglas

Luft/Glas: $\alpha_T = \arcsin(1/n_1) = \arcsin(1/1,5) = 41,8^\circ$

Maximaler Eintrittswinkel in die Faser = 90° - α_T = 48.2°

 90° - α_T steigt also mit steigendem Brechungsindex des lichtleitenden Mediums!

Funktionsmaterialien Prof. Dr. T. Jüstel

Materialien für Lichtleitfasern

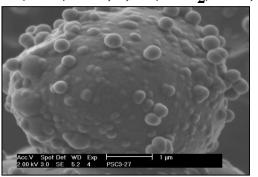
- 1. Effiziente Lichtleitung über große Entfernungen erfordert geringe Dämpfung des optischen Signals:
- kein Intensitätsverlust durch seitliche Abstrahlung
- möglichst hohe Transparenz des lichtleitenden Mediums bei der Übertragungswellenlänge
- 2. Geringe Signalverzerrung lässt sich mit Gradienten-Lichtleitfasern erzielen:
- Faser, dessen Brechungsindex vom Kern zum Mantel hin kontinuierlich abnimmt

Natriumsilicatglas (Na_2O-SiO_2) ist im für optische Übertragung wichtigen Wellenlängenbereich zwischen 0,8 und 1,8 µm sehr transparent, aber die Absorption durch Verunreinigungen (im ppm-Bereich)

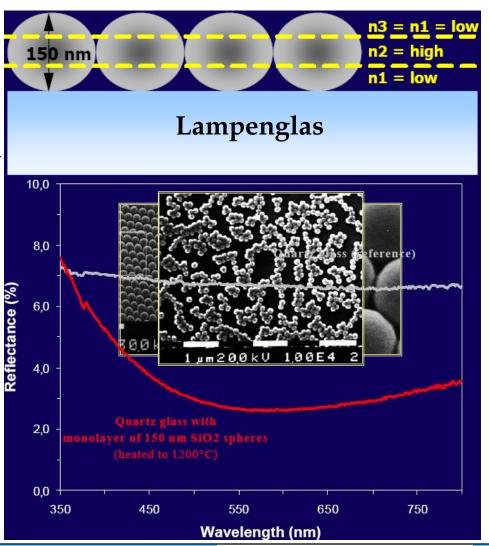
- Fe, Co, Cr, Ni, V, Cu
- H₂O als OH-Gruppen (inkl. Oberschwingungen) und Streuung durch Einschlüsse
- Gasblasen
- Kristallite

führen zur Dämpfung des optischen Signals.

Erniedrigung des Brechungsindexes Zusatz von B₂O₃ oder Fluoriden

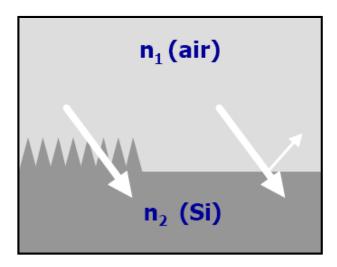

Erhöhung des Brechungsindexes Zusatz von P₂O₅, GeO₂ oder PbO

Interferenzschichten

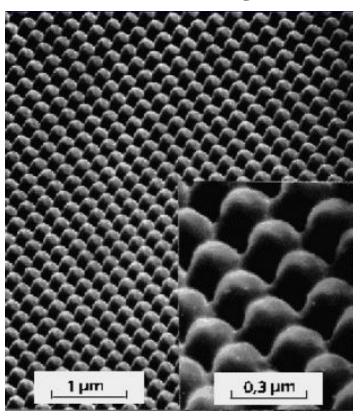

- ⇒ Anti-Reflexionsschichten zur Erhöhung der Lichtaus- und einkopplung
- Schichtenfolge aus hoch- und niedrigbrechenden Materialien, z.B. abwechselnd SiO₂ und TiO₂

"Mottenaugeneffekt"

(Ca,Sr)S:Eu mit SiO₂ n(SrS) ~ 2,1, n(SiO₂) ~ 1,5



Funktionsmaterialien Prof. Dr. T. Jüstel


Interferenzschichten

- ⇒ Mottenaugenbeschichtungen zur Verbesserung der Lichteinkopplung
- ⇒ Solarzellen mit erhöhter Effizienz

Periodische Oberflächenstruktur (Spektrum der Wissenschaft, August 1997, 20)

Fraunhofer Institute Würzburg und Freiburg

Homogene und heterogene Katalyse

Homogene Katalyse: Reaktanden und Katalysator liegen in der gleichen Phase vor

Heterogene Katalyse: Reaktanden und Katalysator liegen in verschiedenen Phasen vor

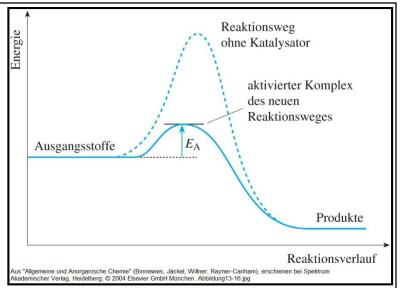
 \Rightarrow Wechselwirkung an Oberflächen, z.B. bei Gasreaktionen oder Reaktionen in Lösungen

Physisorption: 20 - 50 kJ/mol

Chemisorption: einige 100 kJ/mol

Einsatzgebiete heterogener katalytischer Materialien

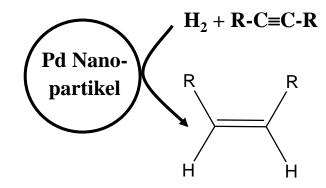
- Selektive Synthese organischer und anorganischer Verbindungen, z.B. NH₃ oder SO₃
- Abgasaufbereitung
- Wasseraufbereitung (Ab-, Prozess-, Trinkwasser)
- Solarzellen (Grätzel-Zelle)

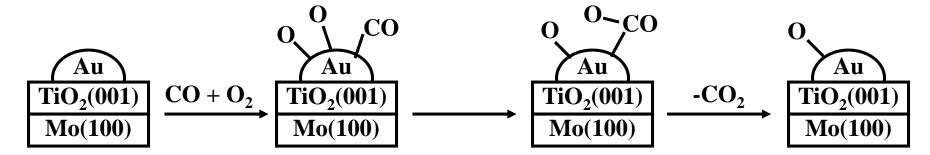

Materialien für die heterogene Katalyse

Wirkung

- 1. Absenkung der Aktivierungsenergie
- 2. Lokalisierung der Reaktanden (Edukte) durch Adsorption an der Oberfläche

Anforderungen


- Hohe Selektivität, z. B. Zeolithe
- Hohe Reaktivität, z. B. Übergangsmetalle → Metalle der Pt-Gruppe
- Hohe spezifische Oberfläche
 - Einphasige Katalysatoren
 - Nanopartikel
 - Zeolithe und Tonmineralien
 - Mehrphasenkatalysator
 - Pt auf γ-Al₂O₃ oder MgO: Elektronendonatoren
 - Pt auf Kieselgel SiO₂ oder ZrO₂: Elektronenakzeptoren
- Hinreichende Stabilität bzw. Lebensdauer (Katalysezyklen)
 - ⇒ Vermeidung der Gegenwart von Katalysatorgiften, z.B. Schwefel



Synthese organischer und anorganischer Verbindungen

(Stereoselektive) Hydrierungen
 CH₃-C≡C-CH₂-CH₂-CH₂-CH₃ + H₂ → cis-2-Hexen + trans-2-Hexen
 (2-Hexin)

Oxidationsreaktionen2 CO + O₂ → 2 CO₂

Synthese organischer und anorganischer Verbindungen

3. Methanol-Synthese

$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$$

- \Rightarrow Reduktion von C \Rightarrow Elektropositive Katalysatoren \Rightarrow NiO, CuO, ZnO
- 4. Kohleverflüssigung: Fischer-Tropsch-Synthese (1923)

$$C + 3 H_2O \rightarrow CO + H_2$$
 (Synthesegas)

$$n CO + (2n+1) H_2 \rightarrow C_n H_{2n+2} + n H_2 O$$

- \Rightarrow Reduktion von C \Rightarrow Stark elektropositive Katalysatoren \Rightarrow Fe, Co
- ⇒ Schwefel- und Stickstofffreie Kohlenwasserstoffe
- 5. NH₃-Synthese: Haber-Bosch-Verfahren (1913)

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$

 \Rightarrow Reduktion von N₂ \Rightarrow stark elektropositive

Katalysatoren \Rightarrow Fe mit K_2O (elektronischer Promotor)

Bildung von Eisennitrid Fe≡N an der Oberfläche

Anlage zur NH₃-Produktion

Synthese organischer und anorganischer Verbindungen

6. Chlorierung von Alkanen

$$C_2H_6 + Cl_2 \rightarrow CH_3CH_2Cl + HCl$$

Aktivierung der Cl₂ Moleküle durch Polarisation ⇒ Elektronenreiche Katalysatoren ⇒ MgO-Katalysator

Nebenreaktion: $MgO + HCl \rightarrow Mg(OH)Cl$

7. Dechlorierung organischer Verbindungen

Aktivierung der R-Cl Bindung \Rightarrow MgO-Katalysator

$$R-CH_2-CH_2Cl \rightarrow R-CH=CH_2 + HCl$$

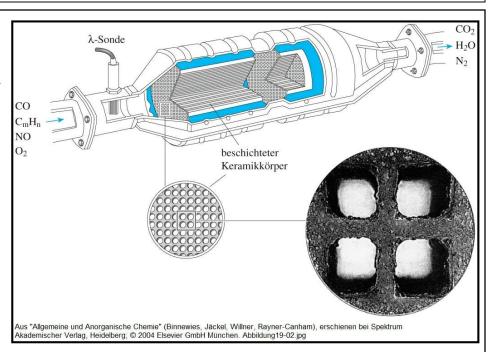
$$MgO + 2 HCl \rightarrow MgCl_2 + H_2O$$

Abgasaufbereitung

Autokatal.: Pd/Pt-Pigment auf Keramikkörper

$$2 CO + O_2 \rightarrow 2 CO_2$$

$$C_xH_v + (x + y/4) O_2 \rightarrow x CO_2 + y/2 H_2O$$


$$2 \text{ NO} + 2 \text{ CO} \rightarrow \text{N}_2 + 2 \text{ CO}_2$$

$$C_x H_y + (2x + y/2) NO \rightarrow$$

$$x CO_2 + (x + y/4) N_2 + y/2 H_2O$$

Sauerstoffregulation durch Ce^{IV}O₂

$$2 \operatorname{Ce}^{IV} O_2 \rightleftharpoons \operatorname{Ce}^{III}_{2} O_3 + \frac{1}{2} O_2$$

Selective Catalytic Reduction (SCR)-Katalysatoren (FeVO₄ auf Keramikträger)

- a) $(NH_2)_2CO \rightarrow NH_3 + HNCO$ (Thermolyse von Harnstoff zu Ammoniak und Isocyansäure)
- b) $6 \text{ NO} + 4 \text{ NH}_3 \rightarrow 5 \text{ N}_2 + 6 \text{ H}_2\text{O}$ bzw. $6 \text{ NO}_2 + 8 \text{ NH}_3 \rightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$

Rußreduktion in Dieselabgasen (Regenerationsadditive)

- 1. Partikelfilter
- 2. Optimale Motorsteuerung \Rightarrow Verwendung von Regenerationsadditiven wie CeO₂ (oder Fe₂O₃): C + 2 CeO₂ \rightarrow CO + Ce₂O₃

Funktionsmaterialien Prof. Dr. T. Jüstel

Wasseraufbereitung

Keimfreies Wasser \Rightarrow Cl₂, Cl₂O, O₃, UV-A + Kat., UV-C (240 - 280 nm)

- Abwasser
- Prozesswasser
- Trinkwasser

Ultrareines Wasser \Rightarrow VUV (180 - 190 nm) \sim "Bandkante" von H₂O

Halbleiterindustrie

Weltmarkt für Wasser (2023: 294 Mrd. €, 2030: 487 Mrd. €, i.e. CAGR ~ 7.5%)

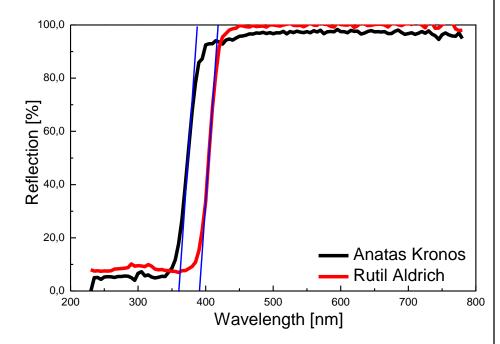
	1998/1999 [Mrd. €]	2005 [Mrd. €]	Steigerung [%]
Trinkwasser	37	63,5	72
Abwasser	90,5	122,5	35
Prozesswasser	5,5	9,5	72
Übrige Anwendungen	15	23,5	57
Gesamtmarkt	148	219	48

Funktionsmaterialien Prof. Dr. T. Jüstel

Wasseraufbereitung mit UV-A Strahlung und Katalysator

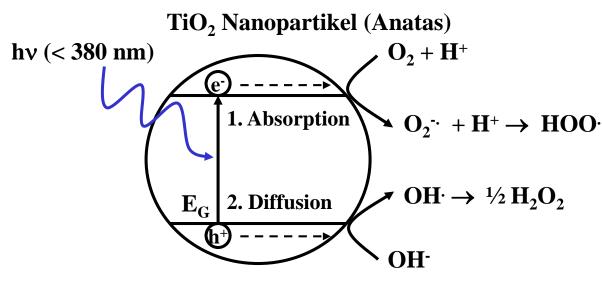
 \Rightarrow Pigmente mit geringer Bandlücke: TiO₂, ZnO, ZnS, In₂O₃, Ba₂In₂O₅, WO₃, MoO₃, Fe₂O₃, CaTiO₃, Nb₂O₅, SiC, SnO₂, Nb₂O₅, Ta₂O₅

Modifikation	E_{g} [eV]	E_{g} [nm]	n
Anatas	3,5	360	2,55
Rutil	3,2	390	2,79


1. UV-Absorption (Schutzpigment)

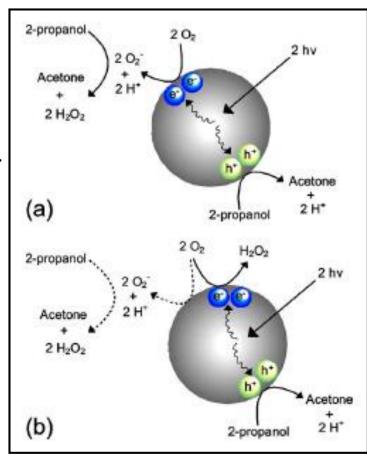
⇒ Anwendung von Rutil oder ZnO Sonnenschutzcremes, Polymere, Fassaden

2. Photochemie


⇒ Anwendung von Anatas

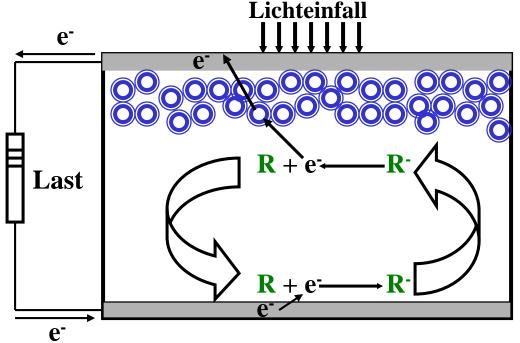
$$TiO_2 + h\nu \rightarrow TiO_2^*(h_{VB}^+ + e_{CB}^-)$$

 $h_{VB}^+ + H_2O \rightarrow H^+ + OH\cdot (Hydroxylradikale)$
 $e_{CB}^- + O_2 \rightarrow O_2^- (Superoxid-Anion) \Rightarrow$



Oxidativer Abbau organischer Verbindungen in Wasser oder Luft sowie an Oberflächen

Wasseraufbereitung mit UV-A Strahlung und Katalysator



$$TiO_2^* + O_2 \rightarrow TiO_2^+ + O_2^-$$

 $TiO_2^* + OH^- \rightarrow TiO_2^- + OH^-$
 $O_2^- + H^+ \rightarrow HOO^-$
 $2 OH^- \rightarrow H_2O_2$

 $3n H_2O_2 + C_nH_{2n+2} \rightarrow n CO_2 + (4n+1) H_2O$ Photoreaktoren, die mit Sonnenlicht arbeiten \Rightarrow Aktuelle Forschung: Dotierung zur Sensibilisierung für den sichtbaren Bereich

Solarzellen (Grätzel-Zellen)

Glassubstrat mit SnO₂:F (0,5 µm)

TiO₂-Nanopartikel Membran (5 - 10 μm)

Elektrolytlösung mit Redoxmediator (Wasser oder organische LM)

Glassubstrat mit SnO_2 :F (0,5 µm) und Pt-Beschichtung (2 µm)

TiO₂ ist der (ideale) Katalysator für die Ladungstrennung!

Solarzellen (Grätzel-Zellen)

1. Photosensibilisierung durch Farbstoffe (Standard: Ru²⁺-Komplexe)

Hoher Wirkungsgrad erfordert starke Absorption von Licht mit einer Wellenlänge < 1100 nm (> 1,1 eV) ⇒ Anregung von erlaubten elektronischen Übergängen:

• organische Verbindungen

- $\pi \to \pi^*$ -Übergänge
- Anthocyane, Carotinoide, Chlorophylle, Coumarine, Porphyrine

(ausgedehnte π -Elektronensysteme)

Charge-Transfer (CT)-Übergänge

• Koordinationsverbindungen

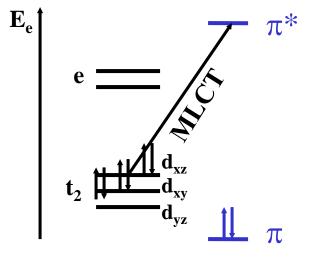
Ligand-Metall (LMCT)

$$WO_4^{2-}$$

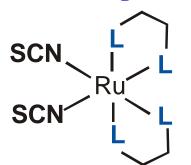
$$5d^0$$

$$O^{2-} \rightarrow W^{6+}$$

Metall-Ligand (MLCT)


$$[L_6Ru^{II}]^{n+}$$

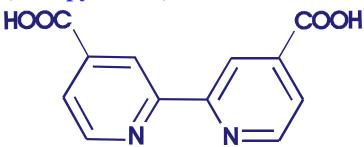
$$Ru^{2+} \rightarrow L$$


H Ru L

Solarzellen (Grätzel-Zellen)

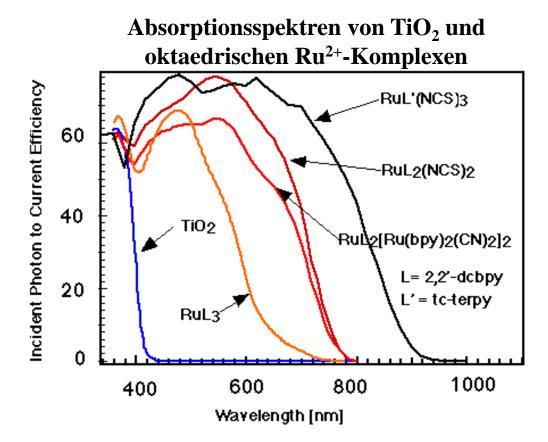
1. Photosensibilisierung durch Farbstoffe

Ru²⁺ Ligand L


Komplex	MLCT [nm]	${\bf E^0_{Ru^{2+}\!/Ru^{3+}}}$ [V	vs NHE]
---------	-----------	------------------------------------	---------

$[RuL_2Cl_2]$	534	+0,80
$[RuL_2(NCS)_2]$	534*	+1,09
$[RuL_2(CN)_2]$	493	+1,40

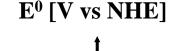
*Die Absorptionskante liegt bei 800 nm (1,6 eV)

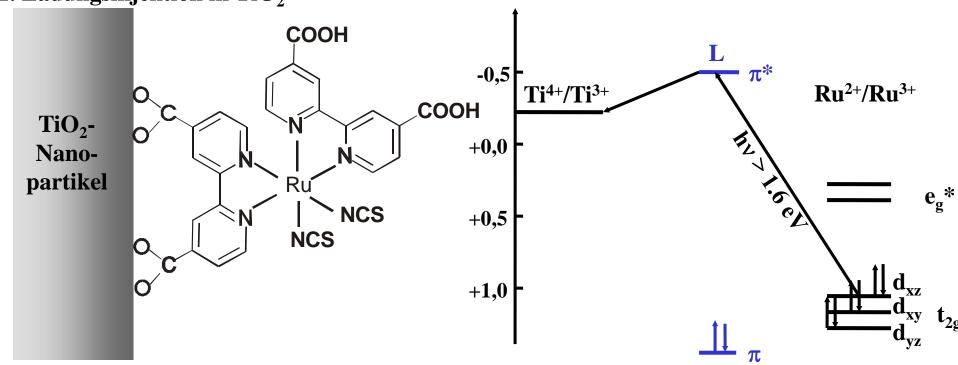

vs NHE = gegen die Normalwasserstoffelektrode:

$$2 H^+ + 2 e^- \rightleftharpoons H_2(g)$$

Solarzellen (Grätzel-Zellen)

1. Photosensibilisierung durch Farbstoffe


Vorteile von Ru²⁺-Chelatkomplexen


- Reversibles Ru²⁺/Ru³⁺ Redoxpaar
- Low-spin Elektronenkonfiguration (antibindende Orbitale sind nicht besetzt)
- Chelateffekt (Entropieeffekt)
- ⇒ kinetisch sehr stabil (langsame Ligandenaustauschreaktionen)
- Erlaubter MLCT Übergang bei relativ niedriger Energie
- ⇒ intensive Absorptionsbanden im sichtbaren Spektralbereich

Funktionsmaterialien Prof. Dr. T. Jüstel

Solarzellen (Grätzel-Zellen)

2. Ladungsinjektion in TiO₂

Photoreduktion von TiO₂

$$[Ru^{2+}L_2(NCS)_2]$$

 $[Ru^{2+}L_2(NCS)_2]^* + Ti^{4+}O_2$

Funktionsmaterialien Prof. Dr. T. Jüstel

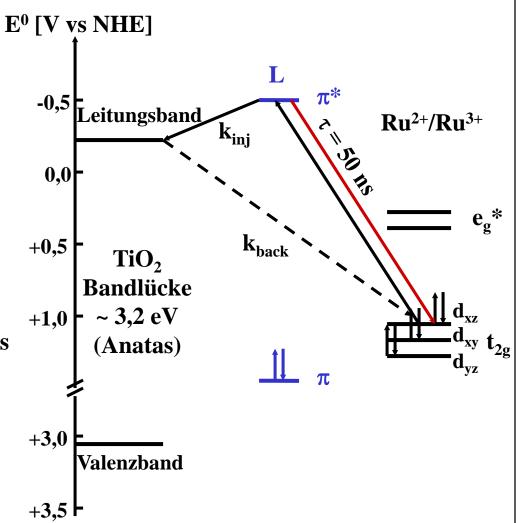
Solarzellen (Grätzel-Zellen)

2. Ladungsinjektion in TiO₂

Effizienz der Ladungsinjektion

$$\phi_{inj} = k_{inj}/(\tau^{\text{-}1} + k_{inj})$$

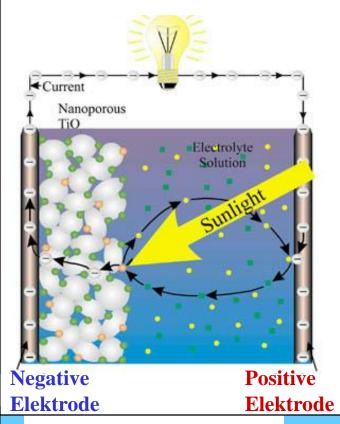
mit


 k_{inj} = Rate der Ladungsinjektion > 1.4 x 10^{11} s⁻¹

 τ = Lebensdauer des MLCT-Zustandes

= 50 ns (Fluoreszenz)

$$\Rightarrow \phi_{\rm inj} > 99,9\%$$


$$k_{inj}/k_{back} > 10^3$$

Funktionsmaterialien Prof. Dr. T. Jüstel

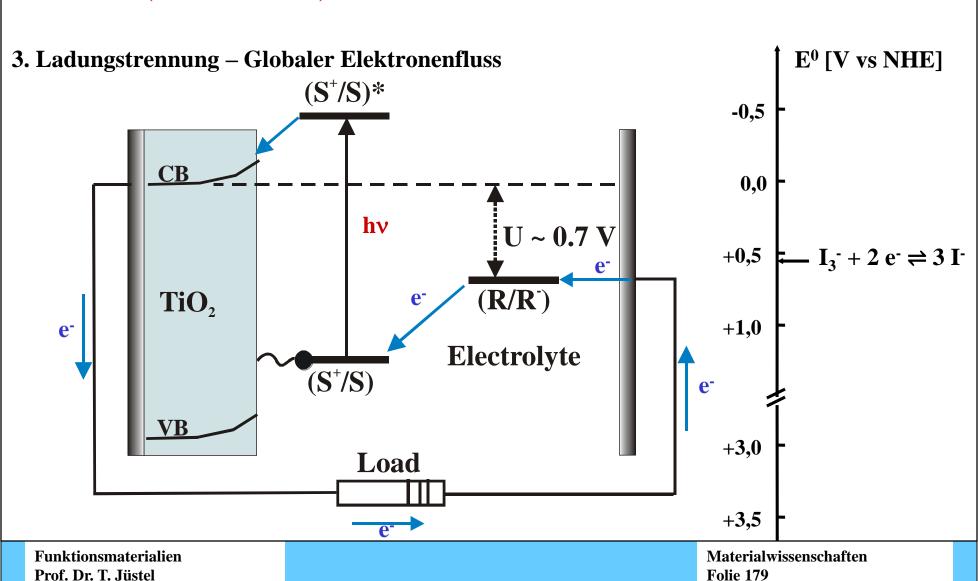
Solarzellen (Grätzel-Zellen)

3. Ladungstrennung

Ein mobiles Redoxsystem gelöst in dem Elektrolyten sorgt für die Ladungstrennung

Gegenelektrode

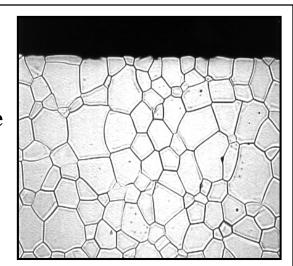
 $I_3^- + 2 e^- \rightleftharpoons 3 I^-$ (0,3 M LiI und 0,03 M I_2 in CH₃CN) $E^0 = +0.536 \text{ V vs NHE}$


Reaktion an der negativen Elektrode

$$\begin{split} [Ru^{3+}L_2(NCS)_2]^+ + I^- &\rightarrow 2 \; [Ru^{2+}L_2(NCS)_2] + I \\ 2 \; I &\rightarrow I_2 \\ I_2 + I^- &\rightarrow I_3^- \end{split}$$

Reaktion an der positiven Elektrode

$$I_3$$
 + 2 e \rightarrow 3 I


Solarzellen (Grätzel-Zellen)

3.1 Keramische Materialien

Definition und Klassifikation

Unter Keramiken versteht man feste Stoffe, die weder metallisch, intermetallisch oder organisch sind, und welche aus einem Gefüge einer oder mehrerer Phasen (kristallin oder glasartig) bestehen.

Glaskeramik

Feinkörniges Gefüge aus einer kristallinen und einer Glasphase

Tonkeramik (Silicatkeramik)

Hauptbestandteil: Schichtsilikate \Rightarrow Kaolinit Al₄[Si₄O₁₀](OH)₈

Montmorillonit (Na,Ca)_{0,3}(Al,Mg)₂Si₄O₁₀(OH)₂·nH₂O

1. Tongut (porös)

a. Irdengut: Töpferwaren

b. Steingut: Geschirr, Sanitärwaren

2. Tonzeug (dicht)

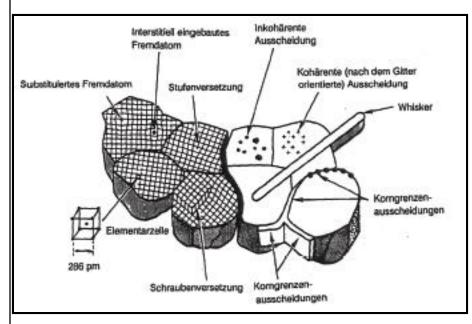
a. Steinzeug: Fliesen, Sanitärwaren

b. Porzellan: Geschirr ⇒ Hartporzellan: 50% Kaolinit, 25% Quarz, 25% Feldspat

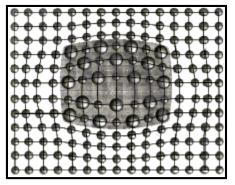
Funktionsmaterialien Prof. Dr. T. Jüstel

Definition und Klassifikation

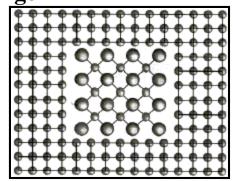
Hochleistungskeramik (Hochtemperatur- und Funktionskeramik)


Chemisch hergestellte, hochreine Oxide, Boride, Carbide, Nitride, Silicide usw. genau definierter Zusammensetzung und Teilchengröße (5 nm – 50 μ m), die durch Pressen und Sintern zu kompakten Körpern verarbeitet werden

Oxide	Boride	Carbide	Nitride	Silicide
Al_2O_3	\mathbf{TiB}_{2}	SiC	Si_3N_4	\mathbf{MoSi}_2
ZrO ₂	\mathbf{ZrB}_2	$\mathbf{B_4C}$	$\mathbf{B}\mathbf{N}$	\mathbf{WSi}_2
TiO ₂	LaB ₆	WC	AlN	PRECISION MICROFLAT ON LaB ₆ CRYSTAL
MO·Fe ₂ O ₃ (Ferrite)	SmB_6	TiC	TiN	LaB ₆ SINGLE CRYSTAL CARBON FERRULE CARBON HEATER ROD
MTiO ₃ (Titanate)		HfC	ZrN	CERAMIC SUB-BASE
YBa ₂ Cu ₃ O _{7-x} (Cuprate)		TaC		BASE PIN
M ₂ O·nX ₂ O ₃ (ß-Aluminate)		NbC	MOUNTING	DAGE FIN
mit M = Ca, Sr, Ba und X	X = Al, Ga, Fe			HEATING CURRENT FLOW


Funktionsmaterialien Prof. Dr. T. Jüstel

Aufbau


Ganz allgemein bestehen Keramiken aus mehr oder weniger statistisch orientierten, kristallinen Körnern (Kristalliten), amorphen Bereichen und Rissen

Lit.: Göpel/Ziegler, Einführung in die Materialwissenschaften, Physikalisch-chemische Grundlagen und Anwendungen, B.G. Teubner Verlagsgesellschaft, Stuttgart Leipzig 1996 kohärente + inkohärente Ausscheidungen

Eine kohärente Ausscheidung besitzt die gleiche Struktur wie das Wirtsgitter, aber verzerrt es elastisch

Eine inkohärente Ausscheidung besitzt eine andere Struktur als das Wirtsgitter, aber verzerrt es nicht

Lit.: D.R. Askeland, Materialwissenschaften, Spektrum Akademischer Verlag GmbH Heidelberg, Berlin Oxford, 1996

Eigenschaften

Aufgrund ihrer ionischen oder kovalenten Verbindungen besitzen keramische Werkstoffe

meistens folgende Eigenschaften:

- geringe thermische und elektrische Leitfähigkeit
- große Härte und Sprödigkeit
- hoher Schmelzpunkt (> 1500 °C)
- hohe chem. und thermische Stabilität
- niedrige Dichte

Material	Dichte [g/cm ³]	Zugfestigkeit [N/mm²]	
Al_2O_3	4,0	210	
SiC	3,1	175	
Si ₃ N ₄	3,2	560	
SiAION	3,2	420	
ZrO ₂	5,8	455	
_			
$SiAlON = Si_{3,v}Al_{v}N_{4,v}O_{v}$			

Keramiken, bei denen funktionelle und nicht mechanische Eigenschaften im Vordergrund stehen, zeigen allerdings davon abweichende Eigenschaften, wie z.B.

FeO, ZnO Halbleiter

YBa₂Cu₃O_{7-x} **Supraleiter**

Ionenleiter B-NaAl₁₁O₁₇

CrO₂, Y₃Fe₅O₁₂ Magnetika

(Pb,La)(Zr,Ti)O₃ Drucksensoren

Heizelemente MoSi,

Anwendungen

Härte: Al₂O₃, Si₃N₄, SiAlON

⇒ Mahl- und Schneidewerkzeuge

⇒ Tiegel, Ofenbau, Motoren, Turbinen

Chemische Stabilität: Al₂O₃, Y₃Al₅O₁₂

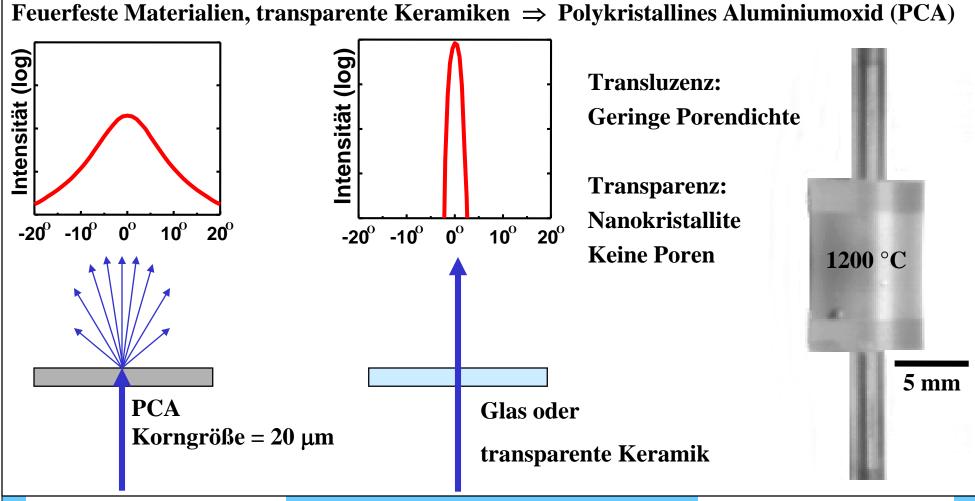
⇒ Keramiklampen (CDM), Laser

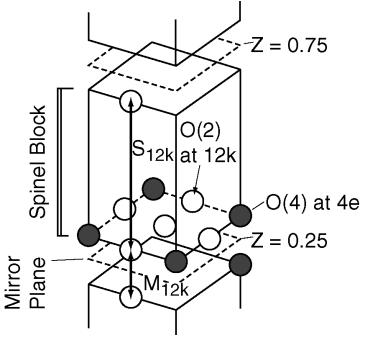
Biologische Kompatibilität: TiO₂, ZrO₂

⇒ Zahn- und Knochenimplantate

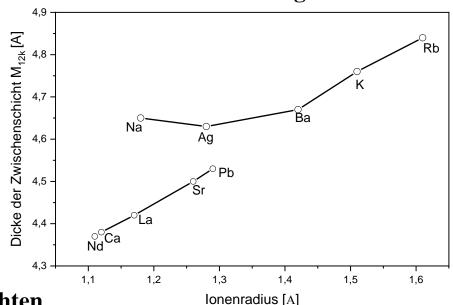
Optische Transparenz: Y₃Al₅O₁₂, Gd₂SiO₅, Lu₂SiO₅

⇒ LEDs, Szintillatoren, Festkörperlaser





Funktionsmaterialien Prof. Dr. T. Jüstel


Oxidkeramik: MO·nX₂O₃ ß-Alumina-Strukturtyp (NaAl₁₁O₁₇)

 $M = Alkali^+, Cu^+, Ag^+, Ga^+, In^+, Tl^+, NH_4^+, H_3O^+; X = Al^{3+}, Ga^{3+}, Fe^{3+}; 5 < n < 11$

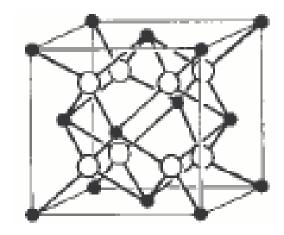
 \Rightarrow Schichtstruktur bestehend aus Spinellblöcken (n X_2O_3) und Zwischenschichten (MO)

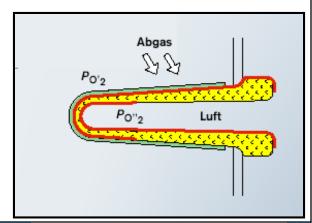
B-Alumina Phase bildet sich nur mit großen Kationen M

Hohe Ionenleitfähigkeit in den Zwischenschichten

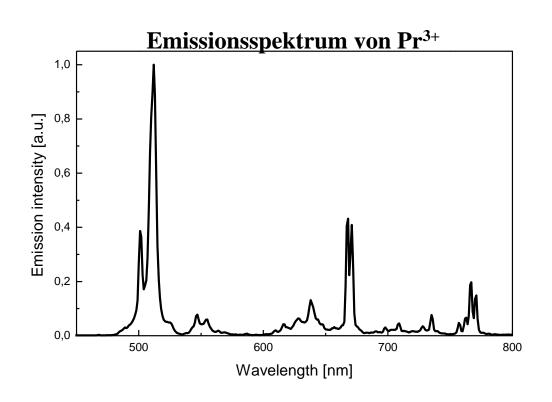
⇒ Festelektrolyte in Brennstoffzellen

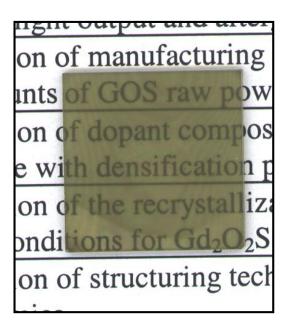
Oxidkeramik: ZrO₂ kubischer Fluorit-Strukturtyp (Sauerstoff ccp)


$$\mathbf{ZrO_2} \text{ (monoklin)} \overset{1100 \, ^{\circ}\mathrm{C}}{\rightleftharpoons} \mathbf{ZrO_2} \text{ (tetragonal)} \overset{2350 \, ^{\circ}\mathrm{C}}{\rightleftharpoons} \mathbf{ZrO_2} \text{ (kubisch)} \overset{2680 \, ^{\circ}\mathrm{C}}{\rightleftharpoons} \mathbf{Schmelze}$$


Damit es beim Abkühlen nicht zu einer Phasenumwandlung bei 1100 °C kommt, wird das kubische $\rm ZrO_2$ durch Zugabe von CaO, MgO oder $\rm Y_2O_3$ stabilisiert, z.B.

$$CaO + Zr_{Zr} + O_O \rightleftharpoons Ca''_{Zr} + V''_O + ZrO_2$$


- **⇒** Festelektrolyte in Brennstoffzellen
- \Rightarrow Galvanische Kette in O₂-Sensoren (Lambda-Sonde)



Oxidkeramik: Gd₂O₂S:Pr,Ce,F (GOS)

Szintillator in Computertomographen (CTs) \Rightarrow Transparente Keramik

Die Herstellung von Keramik ist meist kostengünstiger als das Ziehen von Einkristallen aus einer Schmelze

Funktionsmaterialien Prof. Dr. T. Jüstel

Oxidkeramik: $Y_3Al_5O_{12}$:Ce und $Y_3Al_5O_{12}$:Pr (Granate)

z.B. als Szintillator in Positronenemissionstomographen (PETs) \Rightarrow Transparente Keramik ¹⁸F-Glucose → e⁺ (Positron) e⁺ + e⁻ → 2 γ (511 keV) Normalised emission intensity Szintillator Detektor 511 keV Photon \rightarrow sichtbare Photonen \rightarrow Signal Materialien mit kubischer Kristallstruktur ⇒ Granate, Sesquioxide 500 600 700 Wavelength [nm] Schneiden Polieren **Preparation eines Binder/Flussmittelzugabe** + **Thermische Behandlung:** Binderausbrand + Sintern keramischen Precursors Herstellung (Nanopartikel) der Grünkörper (Vakuum)

Funktionsmaterialien Prof. Dr. T. Jüstel

Oxidkeramik: Granate und Sesquioxide

z.B. als optische Komponente in Festkörperlasern (FKL) \Rightarrow Transparente Keramik

Y₃Al₅O₁₂ Strahlformungsoptik

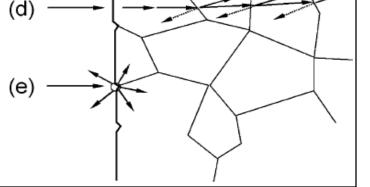
(Y,Lu)₃Al₅O₁₂:Nd Laser mit einer hohen Pulswiederholrate

(Y,Lu,Gd)₃Al₅O₁₂:Yb Scheibenlaser + andere FKL

Sc₂O₃:Yb Scheibenlaser + andere FKL

(Y,Lu)₂O₃:Yb Scheibenlaser + andere FKL

Gd₂O₃:Yb Scheibenlaser + andere FKL


(a) -

(b)

Prozesse, welche die Transmission reduzieren (Ziel: T > 99%)

- a) Streuung an Partikelgrenzflächen
- b) Streuung an Poren oder Einschlüssen
- c) Streuung an Sekundärphasen (Glasphase)
- d) Reflexion oder Doppelbrechung an Grenzflächen
- e) Streuung durch Oberflächenrauigkeit

Funktionsmaterialien Prof. Dr. T. Jüstel

Transluzente Keramik Lu₃Al₅O₁₂ (LuAG)

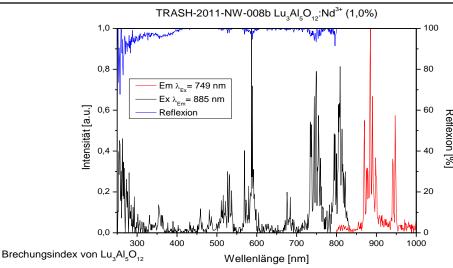
LuAG:Pr, LuAG:Ce Szintillator

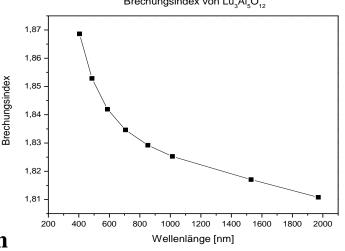
LuAG:Nd NIR Laser

Kristallsystem: kubisch (Granat)

Schmelzpunkt T_m: 1987 °C

Dichte: 6,72 g/cm³

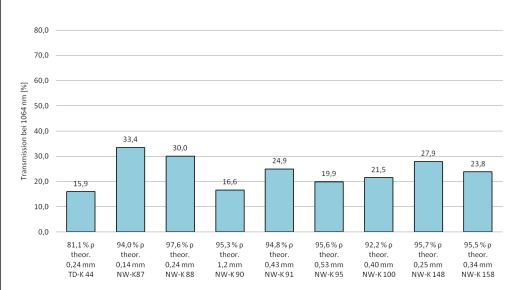

Optische Bandlücke $E_g = 7.3 \text{ eV}$

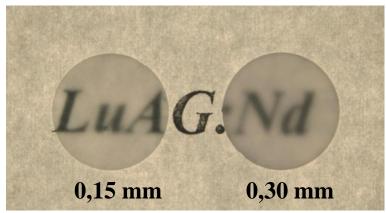

Max. Phononenfrequenz: ~ 600 cm⁻¹

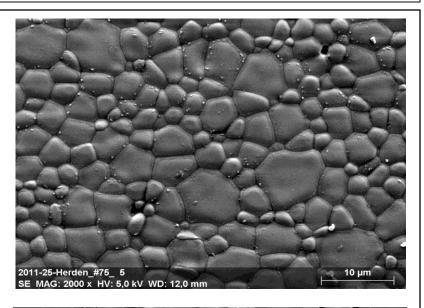
Brechungsindex: n = 1,825 @ 1014 nm

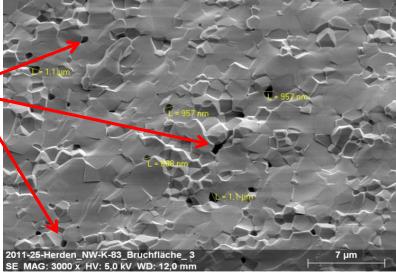
$$T = 1-R_{total}$$
 ($R_{total} = 2\cdot R_{reg}$), wenn $A = 0$

→ Max. Reintransmission = 82,9% bei 1014 nm



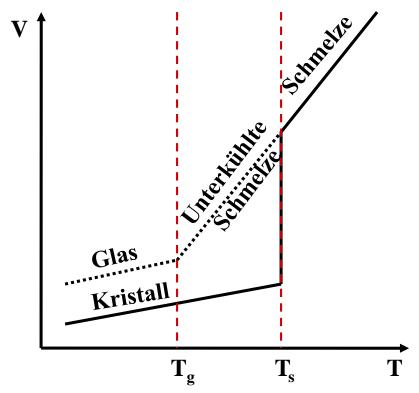

$$R_{\text{reg}} = \frac{(n_1 - n_0)^2}{(n_1 + n_0)^2}$$


Poren


Transluzente Keramik Lu₃Al₅O₁₂ (LuAG)

Funktionsmaterialien Prof. Dr. T. Jüstel

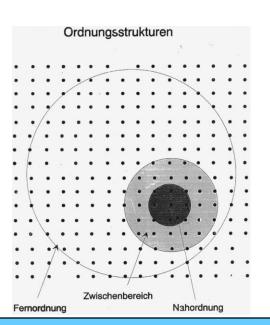
Gläser sind amorphe Festkörper, die aus einer Schmelze durch Abkühlung oder Abschreckung ohne merkliche Kristallisation erstarrt sind

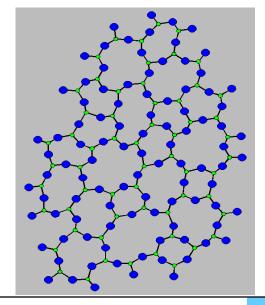

Eigenschaften

- Weite optische Fenster
- Geringe elektrische und thermische Leitfähigkeit
- Gute Korrosionsbeständigkeit
- Große Sprödigkeit
- $T_g/T_s \sim 2/3$

Einteilung nach dem linearen thermischen Ausdehnungskoeffizient α

- Weichgläser $\alpha > 6.10^{-6} \text{ K}^{-1}$
- Hartgläser $\alpha < 6.10^{-6} \text{ K}^{-1}$

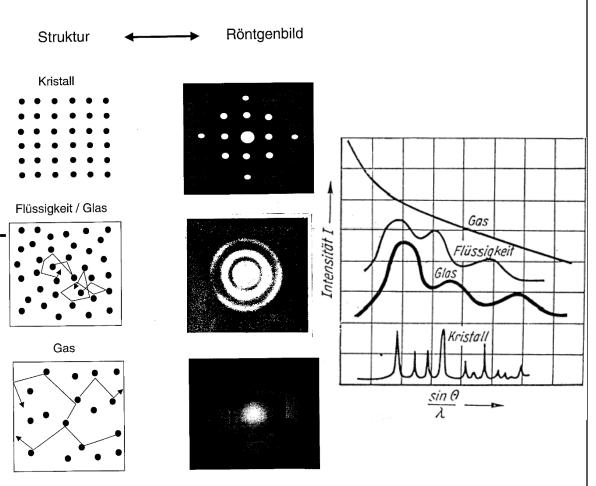

Temperaturabhängigkeit des Volumens


Wie Flüssigkeiten besitzen Gläser eine Nahordnung (< 0,5 nm) jedoch keine Fernordnung (> 2 nm) d.h. keine Translationssymmetrie: Verhalten wie Thermoplaste

Die Grundbausteine eines Glases (Netzwerkbildner) sind denen eines Kristalls sehr ähnlich allerdings ist die Anordnung der Bausteine in einem Glas regelloser als in einem Kristall Si-O-Abstand in einem SiO_4 -Tetraeder: 1,61 Å in α -Quarz, aber 1,62 Å in amorphem SiO_2

kristalliner Festkörper

amorpher Festkörper


Funktionsmaterialien Prof. Dr. T. Jüstel

Materialwissenschaften Folie 194

Durch Röntgenstreuung lassen sich amorphe Gläser von kristallinen Festkörpern leicht unterscheiden

Im Ordnungsgrad verhalten sich Gläser wie Flüssigkeiten, wobei die fehlende Fernordnung die Ursache der optischen Transparenz und der geringen Photolumineszenzquantenausbeute darin aufgelöster Aktivatorionen ist.

Dotierte Gläser sind als Farbfilter, z.B. für LCD-Bildschirme geeignet, aber nicht als effiziente Leuchtpigmente (→ Beschichtung von Fluoreszenzlichtquellen mit kristallinen Leuchtstoffen).

Grundbausteine (Netzwerk- oder Glasbildner)

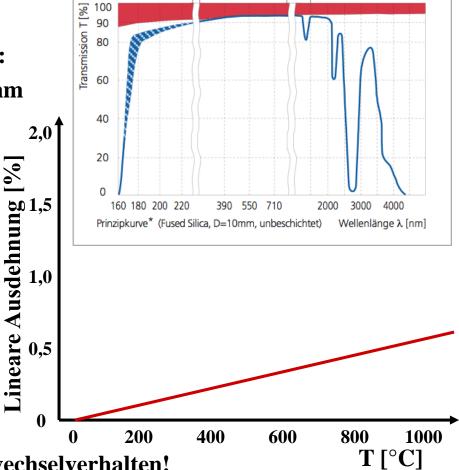
Elemente C (glasartig), S, Se, $P \Rightarrow Allotropie$

Oxide B_2O_3 , SiO_2 , P_2O_5 , V_2O_5 , GeO_2 , As_2O_3 , Sb_2O_3

("saurer Charakter")

Sulfide As₂S₃, Sb₂S₃, verschiedene Verb. mit Tl, Sn, Pb, As, Sb, Bi, Si, P

Selenide/Telluride verschiedene Verbindungen mit Tl, Sn, Pb, As, Sb, Bi


Halogenide BeF₂, AlF₃, ZnCl₂, ZrF₄-BaF₂-AlF₃, ScF₃-BaF₂-YF₃

Hochpolymere Polycarbonat (PC), Polyethylen (PE), Polymethylmethacrylat (PMMA), Polystyrol (PS)

Am häufigsten werden Gläser auf Silikatbasis eingesetzt

Quarz- oder Kieselglas (reines SiO₂) besitzt einen Reihe interessanter physikalischer Eigenschaften:

- hohe optische Transparenz von 180 bis 2000 nm
- hoher Schmelzpunkt: $T_m = 1723 \, ^{\circ}C$
- thermische Beständigkeit: $T_g = 1500$ °C
- geringe Dichte: $\rho = 2,201 \text{ g/cm}^3$
- kleiner linearer thermischer Ausdehnungskoeffizient: $\alpha = 5.4 \cdot 10^{-7} \text{ K}^{-1}$

230nm₁ [230nm 790nm-

₋1500nm

Quarzglas hat somit ein exzellentes Temperaturwechselverhalten!

Funktionsmaterialien Prof. Dr. T. Jüstel

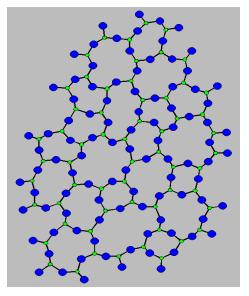
Üblicherweise werden zur Glasherstellung dem Netzwerkbildner, z.B. SiO₂, noch andere (basische) Oxide als Zwischenionen und Netzwerk- bzw. Glaswandler zugesetzt

- \Rightarrow Erniedrigung der Glasumwandlungstemperatur: T_g
- ⇒ Modifikation mechanischer Eigenschaften: Härte, Stabilität, Temperaturwechselfestigkeit
- \Rightarrow Modifikation physikalischer Eigenschaften: Optisches Fenster, Röntgenabsorption, Farbe

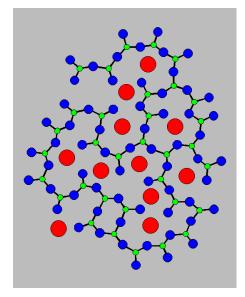
Zwischenionen

 \Rightarrow MgO, PbO, Al₂O₃, Y₂O₃, TiO₂, ZrO₂, SnO₂, ZnO, BeO

Netzwerkwandler


Anorganische Gläser

 \Rightarrow Na₂O, K₂O, CaO, SrO, BaO


Polymere Gläser

⇒ Weichmacher, z.B. Phthalsäureester

ohne Netzwerkwandler

mit Netzwerkwandler

Funktionsmaterialien Prof. Dr. T. Jüstel

A	Anwend	lungen	technischer	(Silikat	t)gläser
		88		(~~	78-00-0

Behälterglas Getränkeflaschen, Konservengläser, Verpackungsglas

Flachglas Gussglas, Tafelglas, Floatglas, Spezialflachglas

Kristallglas Bleikristallglas, Kristallglas

Wirtschaftsglas Trinkgläser, Tischzubehör, Dekoration, Geschenkartikel

Gebrauchsglas Beleuchtungsmittelglas, Leuchtenglas

Spezialglas Glaskolben, Laborglas, Uhrenglas, Brillenglas, Schaumglas

Veredeltes Flachglas Isolierglas, Sicherheitsglas, Spiegel, Möbelglas

Verarbeitetes Hohlglas Laborgeräte, Messgeräte, Ampullen, Glasinstrumente, Isolierbeh.

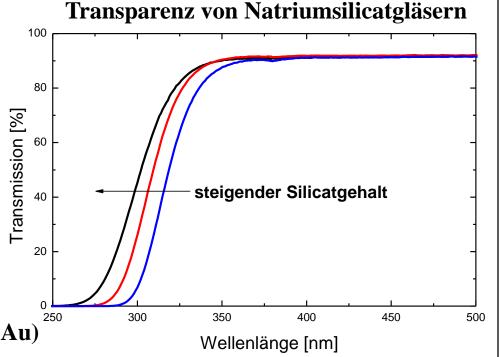
Mineralfasern Glaswolle, Steinwolle, Glasgewebe, Glasmatten

Funktionsmaterialien Prof. Dr. T. Jüstel

Zusammensetzung technischer (Silikat)gläser (alle Angaben in Massen-%)

Glasart	SiO ₂	B_2O_3	Al ₂ O ₃	PbO	CaO	MgO	BaO	Na ₂ O	K ₂ O
Behälterglas	72		2		10			14	
Flachglas	72		1,5		8,5	3,5		13,5	
Geräte-, Laborglas	80	10	3		1	1		5	
Kathodenstrahlröhre	60		4	11	1,7	1,2	1.3	8	8
Bleikristallglas	60,5		8	24				2,5	2
Kristallglas	76,5		0,3		6			6	11
Optisches Glas	28			70				1	1
Kronglas	72	8,2			1,6	0,5		7,2	10,5
(E-) "Electric" Glas	54	10	14		17,5	4,5			
Quarzglas	100								

Funktionsmaterialien Prof. Dr. T. Jüstel


Zusammensetzung und Anwendung von Spezialgläsern

Glasart	Zusammensetzung	Anwendungen
Quarzglas (Kieselglas, Silikatglas)	${f SiO}_2$	Optische Fasern
		UV-transparente Optik
		Schmelztiegel
		Halbleitertechnologie
		UV-Lampen
Fluoridglas	ZrF ₄ -BaF ₂ -AlF ₃ , ZrF ₄ -BaF ₂ -LaF ₃	Infrarotlichtleiter
Chalkogenidglas	AsTe ₃ , As ₂ S ₃ , GeSe ₂ , GeS ₂	IR-transparente Optik
Glasfasern	SiO ₂ , Al ₂ O ₃ , CaO, MgO, Na ₂ O,	Verbindung von Metallen,
	K ₂ O	Keramiken und Gläsern
Lötgläser (Glaslote)	Blei-Borat-Glas	Verstärkung von Polymeren
Glasveredelung	Glasbeschichtungen	Wärmedämmung
		UV-Schutz
		Spiegel
		Filter

Funktionsmaterialien Prof. Dr. T. Jüstel

Modifikation der physikalischen Eigenschaften

- Erhöhung der Temp.-Wechselfestigkeit ⇒ B₂O₃-Zugabe
- Erhöhung der UV-Transparenz →
 ⇒ höherer Silicatgehalt
- Erhöhung des Brechungsindexes ⇒ PbO/GeO₂-Zugabe
- Erhöhung der Röntgenabsorption
 ⇒ BaO/SrO/PbO-Zugabe
- Einfärbung ⇒ gefärbte Ionen oder Metallcluster (z.B. Au)
- Eintrübung
 ⇒ ZrSiO₄/Ca₃(PO₄)₂-Zugabe
- Entspiegelung
 ⇒ Beschichtung mit SiO₂-Nanopartikeln

Entfärbung von Gläsern

Flachglas und andere technische Gläser (Lampengläser) enthalten häufig geringe Konzentrationen an Fe²⁺, welche dem Glas einen blau-grünen Farbstich verleihen

Zugabe von Oxidationsmitteln, wie z.B. MnO₂ (Glasmacherseife)

$$\Rightarrow$$
 2 Fe²⁺ + Mn⁴⁺ \rightarrow 2 Fe³⁺ + Mn²⁺

Problem: Solarisation dieser Gläser durch UV-Licht (Sonnenlicht oder Plasmastrahlung)

$$\Rightarrow$$
 Mn²⁺ $\xrightarrow{h\nu}$ Mn³⁺(violett) + e⁻(Farbzentrum)

Ein alternatives Oxidationsmittel ist As_2O_5 , das sich beim Erhitzen zersetzt

$$\Rightarrow As_2O_5 \stackrel{\Delta T}{\Rightarrow} As_2O_3 + O_2 \\ \Rightarrow 4 \text{ FeO} + O_2 \rightarrow 2 \text{ Fe}_2O_3$$

Farbe

violett

farblos

farblos

farblos

violett

grün

blau

blau-grün

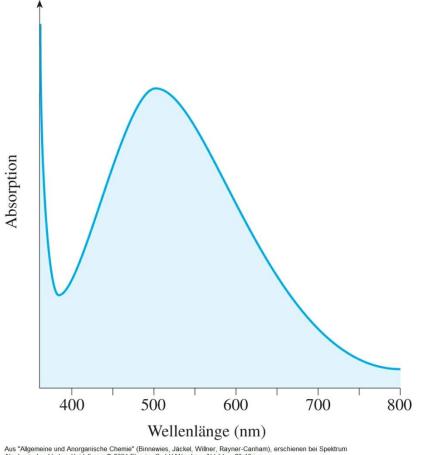
schwach gelb

blau, violett

blau, gelb

grün

grün

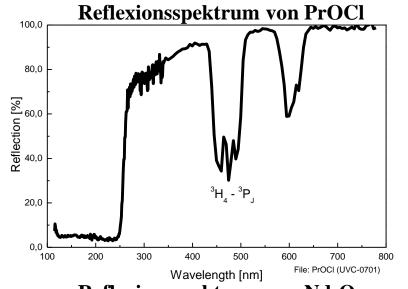

gelb

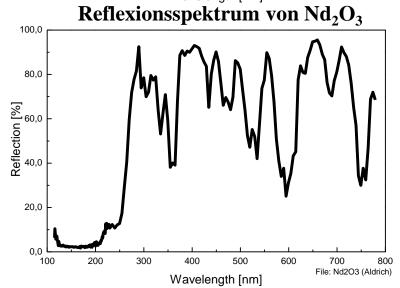
Färbung von Gläsern

Zugabe von ÜM-Ionen

Ion	Koordinationszahl
Ti ³⁺	6
Ti ⁴⁺	6
V^{3+}	6
V^{5+}	4
Cr^{3+}	6
Cr ⁶⁺	4
Mn^{2+}	6
Mn^{3+}	6
Fe ²⁺	4
Fe ³⁺	4, 6
Co ²⁺	4, 6
Co ³⁺	4
Ni^{2+}	4, 6
Cu ²⁺	6

Absorptionsspektrum von [Ti(H₂O)₆]³⁺


Akademischer Verlag, Heidelberg; © 2004 Elsevier GmbH München. Abbildung23-19.jpg


Färbung von Gläsern

2. Zugabe von Lanthanoid- oder Actinoid-Ionen

Ion	Koordinationzahl	Farbe
Ce ³⁺	6	farblos
Ce^{4+}	6	farblos bis gelb
Pr ³⁺	6	grün
Nd^{3+}	6	violett
$\mathrm{UO_2^{2+}}$	6	gelb-grün (fluoresziert)

- Ce³⁺ wird als UV-A Filter in Halogenund Hg-Hochdrucklampenglas verwendet
- Nd³⁺ wird in Brillen- und in Bildschirmglas zur Kontrasterhöhung eingesetzt
- 3. Erzeugung von Metallkolloiden (10 50 nm) Rohstoffe: CuCl₂, AgNO₃, AuCl₃ + Reduktionsmittel: SnCl₂, As₂O₃

Organische Gläser – Eigenschaften, Anwendung und Struktur

Polymethacrylatmethylest. (PMMA) Polycarbonat (PC oder Makrolon)

Eigenschaften hohe (UV-)Transparenz ($E_g \sim 4,4$ eV) hohe Transparenz

hohe Lichtbeständigkeit hohe Festigkeit und Zähigkeit

Löslichkeit in unpolaren LM hohe Schlag und Bruchfestigkeit

Anwendung Plexiglasscheiben

Brillengläser, (Kontakt)linsen

Datenträger (CDs und DVDs)

Brillenvisiere

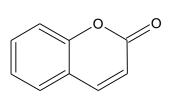
Organische Gläser - Dotierungen

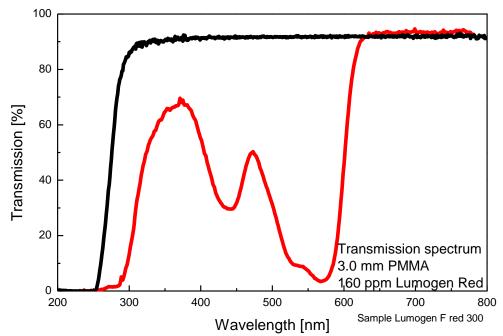
Mit organischen Luminophoren

- Perylenderivate (LumogenTM)
- Coumarinderivate (LASER-Farbstoffe)
- Rhodamine, z.B. Rhodamin B oder 6G
- Fluorescein


Anwendung

- Designelemente
- Verkehrszeichen
- (Lichtquellen)




Lumogenplatten Quelle: BASF AG

Perylen

Coumarin

Funktionsmaterialien Prof. Dr. T. Jüstel

Glastechnologie

Gläser werden in Temperaturbereichen bearbeitet, in denen ihre Viskosität eine Verformung ohne Zerbrechen zulässt

Die Viskosität einer glasbildenden Schmelze lässt sich durch die Vogel-Fulcher-Tammann-Gleichung beschreiben:

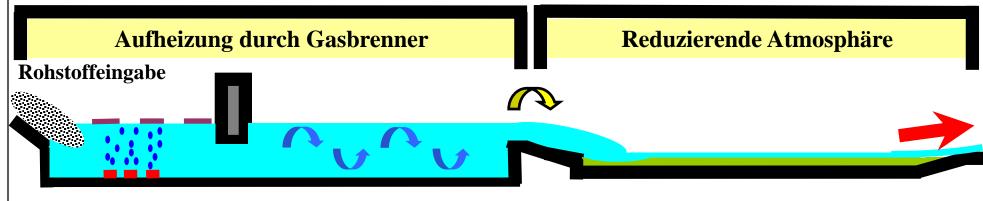
Viskosität [Nm⁻²s]

$$\eta = C \cdot \exp\left(\frac{E_{\eta}}{k_{B}(T - T_{0})}\right)$$

Mit $C = pr\ddot{a}exponentieller Faktor [Nm⁻²s]$

 $k_B = Boltzmannkonstante [J/K]$

 $E_n = Aktivierungsenergie [J]$


T = Temperatur [K]

 $T_0 = Referenztemperatur [K]$

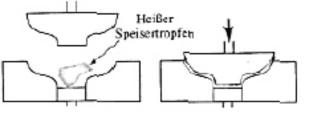
Glastechnologie – Schmelzbereich $\eta = 5$ - 50 Nm⁻²s

• Scheiben und Tafelglas werden aus der Schmelze hergestellt. Als Verfahren werden Walzen zwischen wassergekühlten Rollen und Floaten auf einem Zinnbad angewendet

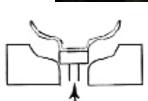
Aufschmelzen & Läutern Homogenisierung

- Flüssiges Zinn
- Glasfasern werden aus der Schmelze unter Verwendung von Pt-Düsen gezogen
- Zur Herstellung optischer Linsen wird die Glasschmelze in Formen gegossen, die sehr langsam abgekühlt werden, um Risse und Spannungen zu vermeiden

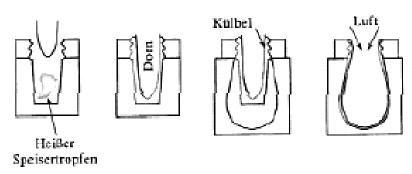
Funktionsmaterialien Prof. Dr. T. Jüstel


Glastechnologie – Schmelzbereich $\eta = 10^3$ - 10^6 Nm⁻²s

Glasbehälter oder Glaskolben für Glüh- und Halogenlampen werden durch Pressen, Ziehen oder Blasen hergestellt.


Das Glas befindet sich in einem Temperaturbereich, in dem es verformt werden kann, aber nicht "wegläuft".

Glasverformungsverfahren


a) Press-Verfahren

b) Press-Blas-Verfahren

Lit.: D.R. Askeland, Materialwissenschaften, Spektrum Verlag GmbH Heidelberg, Berlin, Oxford, 1996

Funktionsmaterialien Prof. Dr. T. Jüstel

Glastechnologie – Entspannungsbereich $\eta = 10^6$ - 10^{12} Nm⁻²s

Einige Gläser müssen entspannt (getempert) werden, um die beim Verformen entstandenen inneren Spannungen abzubauen

Einige Gläser werden auch zwecks Entglasung, d.h. zur Ausscheidung kristalliner Bereiche, wärmebehandelt ⇒ Glaskeramik

Vorgespanntes Glas entsteht durch Abschrecken von Tafelglas an Luft. Die Oberflächenschicht wird dabei schnell abgekühlt und zieht sich zusammen. Die inneren Schichten werden langsamer abgekühlt. Das so hergestellte Glas besitzt höhere Widerstandsfähigkeit gegenüber Zugspannungen und Schlagbeanspruchungen

Funktionsmaterialien Prof. Dr. T. Jüstel

Glastechnologie – Abkühlrate

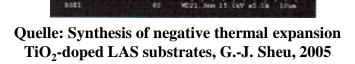
Technik	Abkühlrate [K/s]
Natürliche Konvektion (Luft)	
 Spiegelteleskopglas 	10-5
 Optisches Glas 	10-4
• Flachglas, Behälterglas	10 ⁻³ - 10 ⁻²
Erzwungene Konvektion (Ventilation)	1-10
Flüssigkeitskühlung	$10^2 - 10^3$
Kühlblock	
• Walzen	10^5
• Schmelzspinnen	$10^6 - 10^8$
Verdampfen, Sputtern	10^9

Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik – Definition und Eigenschaften

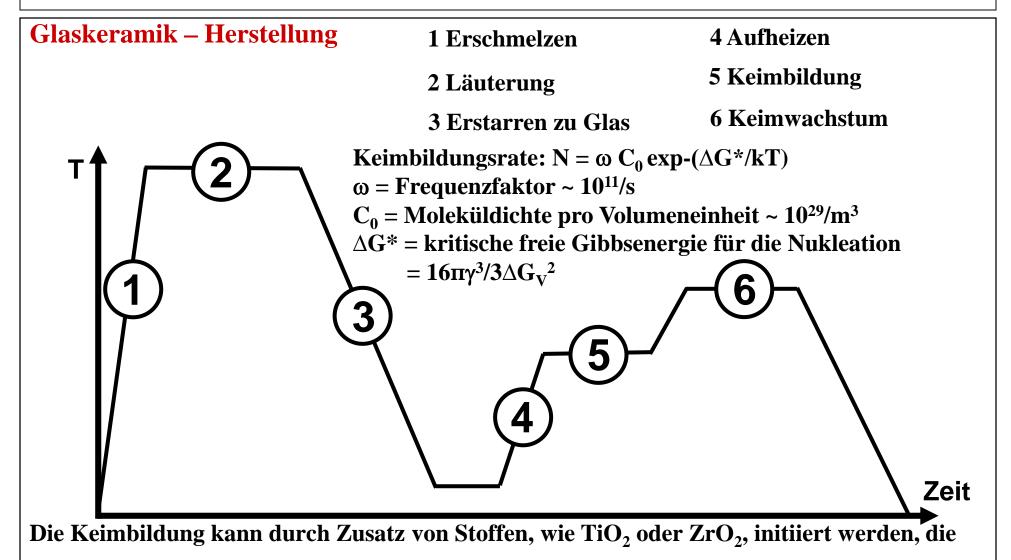
Glas Amorpher Festkörper Unterkühlte Schmelze

Keramik Polykristalliner Festkörper Fest-Fest-Reaktionen von Pulvern


Glaskeramik Kristallite in einer Glasmatrix

Unterkühlte Schmelze mit Kristallitbildung, z.B. Li₂O-SiO₂-Al₂O₃ (LAS) ggf. mit heterog. Keimbildner (TiO₂)

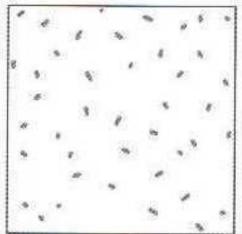
- **⇒** Komplexer Herstellungsprozess
- **⇒** Hochreine Rohstoffe erforderlich
- **⇒** Färbung kompliziert


Eigenschaften

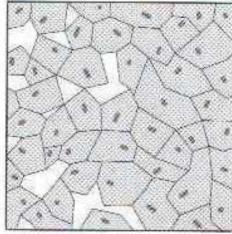
• Geringe oder sogar negative thermische Ausdehnung

- Hohe Temperaturwechselbeständigkeit und hohe dielektrische Durchschlagfestigkeit
- Bestimmte Typen sind maschinenbearbeitbar

Funktionsmaterialien Prof. Dr. T. Jüstel



als Keimbildungszentren fungieren, oder durch geeignete Wärmebehandlung


Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik - Keimwachstum

Zunahme der kristallinen Anteile ~ Zeit, Temperatur, kristal. Promotoren: Li₃PO₄

Quelle: Glass Ceramic Technology, Wolfram Höland and George Beall, 2002

Niedertemperaturnukleation → Kristallite mit geringer Größe

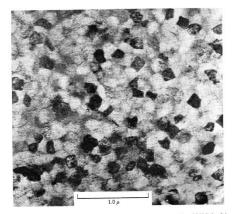


Fig. 5.76 ~(a) Microstructure in Li₂O-Al₂O $_3$ -SiO $_2$ glass ceramic held at 775°C for 2 h before heating to 975°C for 2 min.

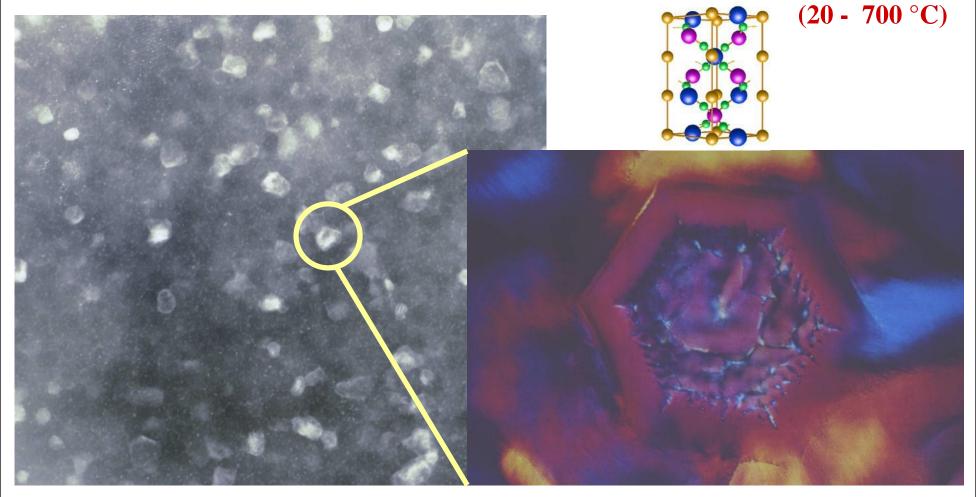
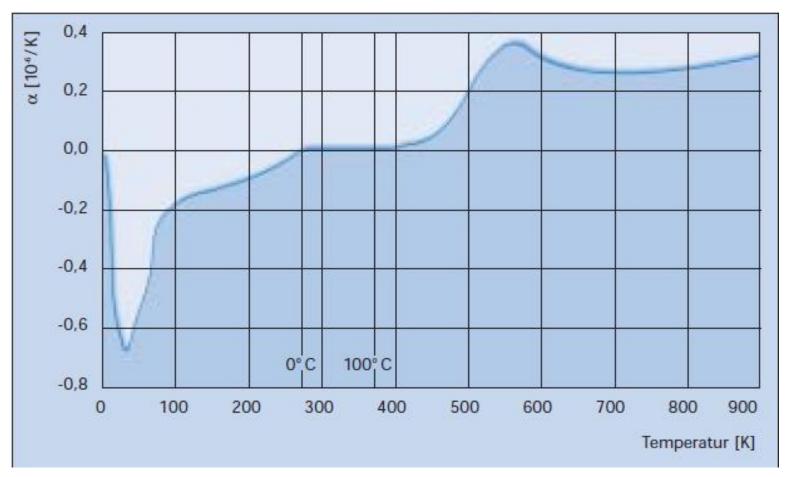


Fig. 5.76 (b) Identical composition heated rapidly to 875°C and held for 25 min. (From P.E. Doherty in R.M. Fulrath and J.A. Pask, Eds., Ceramic Microstructures, John Wiley and Sons, New York, 1968, pp. 161-185.)

Kristallisation bei 875°C liefert große Kristallite


Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik: Li₂O-Al₂O₃-SiO₂ (LAS) mit hexagonalen Kristalliten \(\mathbb{G}\$-SiO₂:Li,Al \\ \to \ \text{LiAlSi}_2O_6 \((\mathbb{B}\$-Spodumen): \(\alpha \sim 1 \) ppm/K \\ \to \ \text{LiAlSiO}_4 \((\mathbb{B}\$-Eukryptit): \(\alpha < 0.1 \) ppm/K

Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik: Zerodur auf Basis von Li₂O-Al₂O₃-SiO₂ (LAS) mit P₂O₅, MgO und ZnO als Kristallisationshilfe und TiO₂, ZrO₂ als heterogene Impfkristalle

Quelle: http://www.schott.com/austria/german/download/zerodur_katalog_deutsch_2004.pdf

Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik - Anwendungen

- Spiegelträger großer Spiegelteleskope (VLT, ELT)
- **Kochfeldabdeckungen** (CeranTM)
- Hitzeschilde in Luft- und Raumfahrt
- Temperaturbeständige Sichtscheiben für Kamine
- LED Konverter

Ce³⁺-dotierte Granate

(Y,Gd,Tb)₃Al₅O₁₂:Ce (Ca,Sr,Ba)₂SiO₄:Eu, (Ca,Sr,Ba)₃SiO₅:Eu Ba₂Si₅N₈:Eu, CaAlSiN₃:Eu Eu²⁺ dotierte Silikate

Eu²⁺ dotierte Nitride

 $Ln_x(Mo,W)_vO_z$ mit Ln = Y, La, Gd, Tb, LuEu³⁺ dotierte Metallate

Lasertechnik: Resonatoren für Festkörperlaser, Matrixbeleuchtung, Laserbeleuchtung Sesquioxide $Y_2O_3:Yb$ Y₃Al₅O₁₂:Nd, Y₃Al₅O₁₂:Yb, Lu₃MgAl₃SiO₁₂:Ce Granate

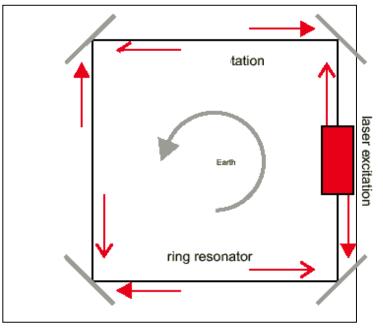
- Ringlasergyroskope (RLG) zur Navigation und Flugbahnstabilisierung von Raketen
- Dentaltechnik & Photoempfindliche Glaskeramik (FoturanTM, FotoceramTM)

Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik: Anwendung als Spiegelträger mit adapt. Optik

Teleskopspiegelfabrikation bei Schott in Mainz

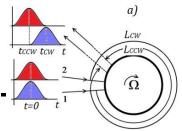
Auf dem Weg zum Cerro Paranal, Chile

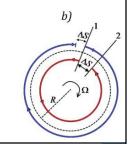


Quelle: www.eso.org

Funktionsmaterialien Prof. Dr. T. Jüstel

Glaskeramik: Anwendung in Ring-Laser-Gyroskop (RLG) Optiken "Laserkreisel"





Sagnac Effect

Sagnac-Effekt (Georges Sagnac 1913)

Zwei gegenläufige optische Strahlen ändern in einer Ringstruktur ihre Phase, wenn der Ring rotiert. Es ist somit möglich, aus der Phasenverschiebung die Winkelgeschwindigkeit abzuleiten.

Funktionsmaterialien Prof. Dr. T. Jüstel