# **Analytical Measurement Options**

# at Research Group

# **Tailored Optical Materials**





FH MÜNSTER University of Applied Sciences

Prof. Dr. Thomas Jüstel Dr. David Enseling tj@fh-muenster.de david.enseling@fh-muenster.de www.fh-muenster.de/juestel

Department of Chemical Engineering Münster University of Applied Sciences Stegerwaldstraße 39 48565 Steinfurt, Germany

Status: June 2018

#### **Table of Contents**

## **Optical Spectroscopy Operations**

- Emission Spectra
- Excitation Spectra
- Reflection Spectra
- Transmission Spectra
- Translucence Spectra
- Decay Curves
- Quantum Efficiency
- Absolutely Radiant and Luminous Flux Spectra
- Excitation Saturation Spectra
- Time and Spectral Flicker Measurements

#### Seite: 2

Prof. Dr. Thomas Jüstel Dr. David Enseling



University of Applied Sciences

## **Dependencies**

- Atmosphere
- Excitation energy
- Temperature
- Time

### **Table of Contents**

- Infrared Spectra
- Infrared Images
- Scanning Electron Micrographs and Energy Dispersive X-Ray Spectra (SEM and EDX)
- X-Ray diffractions
- Magnetic Susceptibility
- Particle Size Measurements
- Elemental Analysis
- Differential Thermal Analysis and Thermogravimetric
- Brunauer–Emmett–Teller (BET) Surface Measurements

Prof. Dr. Thomas Jüstel Dr. David Enseling





#### **Emission Spectra**





#### **Excitation Spectra**







#### **Reflection Spectra**



Spectralon (PTFE) coated



BaSO<sub>4</sub> coated



 $BaSO_4$  coated, heatable to 500 K



Sample holder made from:

- PTFE
- Fused silica
- Aluminum



#### **Temperature Dependent Emission, Excitation and Reflection Spectra**



### **Atmosphere Dependent Emission, Excitation and Reflection Spectra**



Emission-, excitation-, reflection spectra, and decay curves under different atmospheres



Emission spectra of microcrystalline phosphor powder under several oxygen partial pressure

> Prof. Dr. Thomas Jüstel Dr. David Enseling

function of oxygen partial pressure

Stern-Volmer plots of the emission integrals as well as

the decay times of two microcrystalline phosphors as a

FH MÜNSTER University of Applied Sciences

#### **Transmission Spectra**



#### **Translucence Spectra**



#### **Decay Curves**



#### **Temperature Dependent Decay Curves**



#### **Quantum Efficiency**

**Integrating sphere method Relative method** against a phosphor sample with against a white standard known quantum efficiency  $\phi_{Probe} = \frac{nE}{nA} = \frac{\int_{\lambda_2}^{\lambda_3} \frac{\lambda}{hc} \left[ I_{Emission}^{Probe}(\lambda) - I_{Emission}^{Referenz}(\lambda) \right] d\lambda}{\int_{\lambda_1}^{\lambda_2} \frac{\lambda}{hc} \left[ I_{Anregung}^{Referenz}(\lambda) - I_{Anregung}^{Probe}(\lambda) \right] d\lambda}$  $\phi_P = \phi_R * \frac{A_R * E_P}{A_P * E_R}$ 1,0. Weißstandard 0,9-Leuchtstoff 0,8-Intensität / ~ Counts 0,7 -0,6-0,5-0,4 -0,3-0,2-0,1 0.0-400 λ<sub>1</sub> 700 500 6**0**0  $^{\lambda_2}$ Wellenlänge / nm λ3 **FH MÜNSTER** Prof. Dr. Thomas Jüstel Seite: 13 University of Applied Sciences Dr. David Enseling

#### **Absolutely Radiant and Luminous Flux Spectra**

System: Illumia plus (Labsphere) Spectral flux: 250 nm - 850 nm Spectra recording: 200 nm - 1100 nm Minimum measurable Lumens (typical): 0.04 lumens Maximum measurable Lumens (typical): ~ 46000 lumens (Cool white LED source) Exposure time range: 1 ms - 5<sup>3</sup> s (actual exposure time depends on sphere size and source type)

Software: Integral LM: Included

Standards: LM-79: Included LM-82: Module available

Seite: 14

Prof. Dr. Thomas Jüstel Dr. David Enseling Spectrometer: CDS600 and CDS610 2048 element Linear CCD 200 – 850 nm and 350 – 1100 nm





#### **Excitation Saturation Spectra**

- Fluorescence spectrometer
  - Laser excitation for saturation measurements (continuous)
  - 375 nm Laser (50 mW) up to 500 W/mm<sup>2</sup>
  - 405 nm Laser (200 mW) up to 2000 W/mm<sup>2</sup>
  - 445 nm Laser (80 mW) up to 800 W/mm<sup>2</sup>
  - 488 nm Laser (150 mW) up to 1500 W/mm<sup>2</sup>







- 1 Laser diode 445 nm (80 mW) up to 800 W/mm<sup>2</sup>
- 2 Focusing lens
- 3 Pyrometer
- 4 Sample
- 5 Passive cooling (Ag sample holder)
- 6 Emission monochromator
- 7 Detector (PMT)



#### **Intensity as Function of Time and Spectral Flicker Measurements**



The 3D plot illustrates the emission intensity profile as function of time and wavelength

Flicker characterization of different light sources



Seite: 16



CFL





Flicker free

Two different types of filament LED lamps

Prof. Dr. Thomas Jüstel Dr. David Enseling Tailored Optical Materials





#### **Infrared Spectra**

### **Infrared Images**





VarioCAM head HiRes 384 G

Seite: 19

Prof. Dr. Thomas Jüstel Dr. David Enseling



# Scanning Electron Micrographs and Energy Dispersive X-Ray Spectra (SEM and EDX)









Seite: 20



Prof. Dr. Thomas Jüstel Dr. David Enseling







#### **X-Ray Diffraction Patterns**



#### **Magnetic Susceptibility**

Range 1.10<sup>-10</sup> to 1.99.10<sup>-4</sup> volume susceptibility units

Conversion to mass susceptibility by calculating the sample density in the test tube





Seite: 22

Prof. Dr. Thomas Jüstel Dr. David Enseling



#### **Particle Size Distribution Determination**



#### **Elemental Analysis**

N-/O-Analyser LECO TC 400

C-/S-Analyser ELTRA CS 800

Elemental analysis of nitrogen, oxygen, carbon and sulfur ranging from 0.1 to 100% by weight

Seite: 24

Prof. Dr. Thomas Jüstel Dr. David Enseling



# Differential Thermal Analysis and Thermogravimetry (DTA and TG)

Netzsch STA 409



#### **Brunauer–Emmett–Teller (BET) Surface Measurements**

#### **Belsorp Max**



Prof. Dr. Thomas Jüstel Dr. David Enseling

