Übung AC für Physiker Kapitel 9

"Säuren und Basen"

Aufg. 1:

Nennen Sie die Grundzüge der Säure-Base-Konzepte von Arrhenius, Brönstedt und Lewis!

Aufg. 2:

Was versteht man unter dem Ionenprodukt des Wassers?

Aufg. 3:

Der pH-Wert eines Orangensafts wurde mit 2.4 gemessen. Berechnen Sie den pOH-Wert sowie die Konzentration an hydratisierten Wasserstoff- und Hydroxid-Ionen!

Aufg. 4:

Was versteht man unter einem konjugierten Säure-Base-Paar? Nennen Sie drei Beispiele.

Aufg. 5:

Welches ist die konjugierte Base von

- a) H_3PO_4 b) HPO_4^{2-} c) NH_3 d) HS^{-} e) H_2SO_4

Aufg. 6:

Wodurch unterscheiden sich Säuren wie HCl, HCN und HNO₃ von Säuren wie H_2S , H_2CO_3 , H_2SO_4 und H_3PO_4 ?

Aufg.7:

Woraus ergibt sich die Stärke einer Säure? Welche Kennzahl kann zur Einordnung herangezogen werden? Nennen Sie je zwei starke, mittelstarke und schwache Säuren!

Aufg. 8:

Leitet man H₂S in eine Lösung von CuSO₄, so scheidet sich CuS als schwerlöslicher schwarzer Niederschlag aus, und die Lösung reagiert nachher deutlich sauerer als eine gesättigte H₂S-Lösung. Erklären Sie diese Reaktion; begründen Sie insbesondere, warum hier aus der schwachen Säure H₂S die viel stärkere Säure H₃O⁺ entstehen kann!

Aufg. 9:

Berechnen Sie die pH-Werte der folgenden Lösungen starker Säuren bzw. Basen!

- a) 0.175 M HI-Lösung
- b) 0.15 M KOH-Lösung
- c) 1.1·10⁻⁸ M HCI-Lösung

Aufg. 10:

Welche Reaktion erwarten sie bei der Umsetzung

von Natriumcarbonat mit Salzsäure

Kaliumchlorid Schwefelwasserstoff

Calciumnitrat Jodwasserstoff

in wässriger Lösung?