Modulprüfung zur Vorlesung

"Grundlagen der Materialwissenschaften"

Teil: Aufbau und Eigenschaften von Festkörpern (Prof. Dr. T. Jüstel, FH Münster, FB01)

Datum: 07. Februar 2014 Max. 50 Punkte

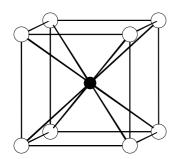
Name, Vorname: Matrikel-Nummer:

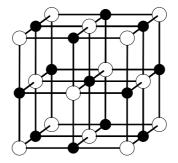
Aufgabe 1) (8 Punkte)

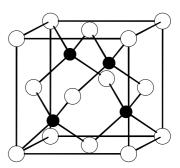
Amorphe und kristalline Festkörper

- a) Erläutern Sie die Begriffe amorphe, polykristalline und einkristalline Festkörper! (3 Punkte)
- b) Wie lassen sich amorphe von kristallinen Festkörpern unterscheiden? (2 Punkte)
- a) Erläutern Sie die Beziehung zwischen den Begriffen Kristallgitter, Einheitsgitter und Kristallstruktur! (3 Punkte)

Aufgabe 2) (4 Punkte)


Mischkristallbildung


- a) Wie entsteht ein Einlagerungs- bzw. ein Substitutionsmischkristall? (2 Punkte)
- b) Warum beobachtet man Mischkristallbildung eher bei der Kationen- als bei der Anionsubstutiton? (2 Punkte)


Aufgabe 3) (8 Punkte)

Idealkristalle

a) Bestimmen Sie die Zahl der Formeleinheiten Z für folgende Strukturen an Hand der abgebildeten Elementarzelle! (je 1 Punkt)

b) Geben Sie für oben gezeigte Strukturtypen jeweils ein Beispiel einer Festkörperverbindung an! (4 Punkte)

Aufgabe 4) (4 Punkte)

Packungsdichte in kristallinen Festkörpern

- a) Berechnen Sie die Raumerfüllung in einem Gitter mit einer kubischflächenzentrierten Packung (Z = 4)! (2 Punkte)
- b) Berechnen Sie die Raumerfüllung in einem Gitter mit einer kubisch-primitiven Packung (Z = 1)! (2 Punkte)

Aufgabe 5) (4 Punkte)

Bestimmung der Gitterkonstante

Pd und Pt kristallisieren beide in der kubisch-dichtesten Kugelpackung (Z = 4).

- a) Berechnen Sie mit Hilfe der unten stehenden Formel auf der Basis der folgenden Dichten (Pd: ρ = 12.02 g/cm³, Pt: ρ = 21.45 g/cm³) und der Molmasse die Gitterkonstante dieser beiden Metalle!
- b) Vergleichen Sie die beiden Gitterkonstanten und erläutern Sie das Ergebnis!

$$\rho = \frac{m}{V} = \frac{Z \cdot M}{N_A a^3}$$

Aufgabe 6) (8 Punkte)

Granate

a) Geben Sie jeweils eine allgemeine Formel für die Substanzklasse der Granate an (2 Punkte)!

- b) Beschreiben Sie die Koordination der Kationen und diskutieren Sie die Möglichkeiten der Substitution! (3 Punkte)
- c) Erläutern Sie das Konzept der Ladungskompensation bei der Mischkristallbildung an Hand der Bildung technischer relevanter Granate, die sich von mineralisch vorkommenden Granaten ableiten lassen! (3 Punkte)

Aufgabe 7) (8 Punkte)

Defekte

a) Erläutern Sie folgende Begriffe an Hand eines selbstgewählten Beispiels! (2 Punkte)

Intrinsische Defekte

Extrinsische Defekte

- b) Nennen Sie drei physikalische Eigenschaften eines Festkörpers, die sich durch den Einbau von Defekten beeinflussen lassen! (3 Punkte)
- c) Wie kann man die Kationenleitfähigkeit in AgCl erhöhen? Erläutern Sie auch den Mechanismus der Kationenleitfähigkeit mit Hilfe einer einfachen Grafik! (3 Punkte)

Aufgabe 8) (6 Punkte)

Phasendiagramme

a) Skizzieren Sie ein x-T Phasendiagramm für eine Zweikomponentensystem mit lückenloser Mischkristallbildung! (2 Punkte)

b) Welche der folgenden Zweikomponentensysteme zeigen Ihrer Erwartung nach unbegrenzte Löslichkeit? (Je 1 Punkt)

Mo - W

LiCl - CsCl

Fe - Cu

 ZrO_2 - HfO_2