Modulprüfung zur Allgemeinen Chemie

- Teil: Anorganische Chemie (Prof. Dr. Thomas Jüstel) -

Datum: 11. Juli 2018	Gesamtpunktzani: 33	
Name:	Matrikel-Nummer:	
Bitte verwenden Sie für die Lösung nur Rückseite)!	diese Aufgabenblätter (no	otfalls auch die
Aufgabe 1: Elektronenhülle und H	ybridisierung	(6 Punkte)
a) Skizzieren Sie den räumlichen Aufbau der Knotenebenen an! (je 1 Punkt)	folgender Orbitale und geb	en Sie die Zahl
1s-Orbital		
2pz-Orbital		
3dz ² -Orbital		
b) Erläutern Sie mit Hilfe eines einfachen	Energiediagramms und der	r Hybridisierung

des Kohlenstoffs, warum dieser entgegen der Erwartung in den allermeisten

Verbindungen vierbindig und nicht zweibindig auftritt? (3 Punkte)

Aufgabe 2: Einfache Reaktionsgleichungen

(6 Punkte)

Stellen Sie für folgende Vorgänge Reaktionsgleichungen auf und richten Sie die Gleichungen jeweils mit ganzzahligen Koeffizienten ein! (je 1 Punkt)

- a) Einleiten von Fluorwasserstoffgas in Wasser
- b) Einbringen von metallischem Kalium in Wasser
- c) Einleiten von Kohlendioxid in Wasser
- d) Veresterung von Methanol (CH₃OH) mit Borsäure (H₃BO₃)
- e) Verbrennen von Acetylen (C₂H₂)
- f) Glühen von Bariumcarbonat (BaCO₃)

Aufgabe 3: Säure-Base-Chemie

(5 Punkte)

- a) Erläutern Sie jeweils an Hand eine einfachen Reaktionsgleichung die Grundzüge folgender Säure-Base-Konzepte (je 1 Punkt)
- 1. Brönsted/Lowry
- 2. Lewis!
- b) Ordnen Sie die vier Säuren jeweils nach Ihrer ansteigenden Säurestärke! (je 1 Punkt)
- 1. H₂SO₄, HClO₄, H₃PO₄, H₄SiO₄
- 2. CH₂F-COOH, CH₃-COOH, CF₃-COOH, CHF₂-COOH
- 3. HCIO₃, HCIO, HCIO₄, HCIO₂

Aufgabe 4: Molekülbau und VSEPR-Modell

(10 Punkte)

- a) Nennen Sie vier mögliche Geometrien für Moleküle mit sechs Valenzelektronenpaaren und benennen Sie jeweils die Anzahl an nicht-bindenden sowie an bindenden Elektronenpaaren! (4 Punkte)
- b) Ergänzen Sie die folgende Tabelle auf Basis des VSEPR-Modells! (6 Punkte)

5 Valenzelektronenpaare		Geometrie (Struktur bzw.	Beispiel
bindend	frei	Anordnung der Atome)	
5	0		
4	1		
3	2		

Aufgabe 5: Molekülorbitaltheorie

(6 Punkte)

a) Erstellen Sie für folgende Moleküle bzw. Ionen das MO-Diagramm, füllen Sie dieses mit Elektronen auf und leiten Sie daraus die jeweilige Bindungsordnung ab! (je 1 Punkt)
He ₂ ³⁺
He ₂ ²⁺
He ₂ +
He ₂
b) Welches der oben genannten Moleküle ist nicht stabil und warum? (1 Punkt)
c) Zu welchem der oben genannten He-Spezies ist das Ion H_2^+ isoelektronisch! (1 Punkt)