Modulprüfung zur Materialcharakterisierung

- Teil: Optische Spektroskopie

Datum: 31. Januar 2007

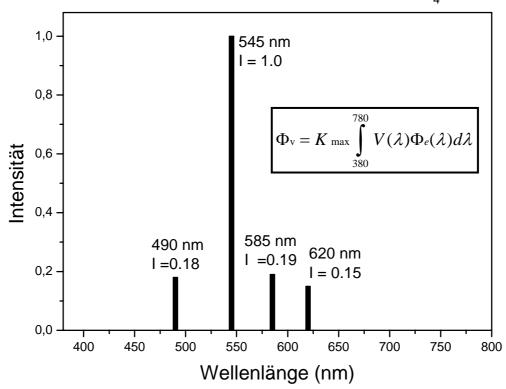
Name:

Aufgabe 1) (6 Punkte)

a) Skizzieren Sie den Aufbau eines Fluoreszenzspektrometers und kennzeichnen Sie die optischen Komponenten!

Matrikel-Nummer:

b) Erläutern Sie jeweils die praktische Vorgehensweise zur Aufnahme eines Anregungs- und eines Emissionsspektrums mit diesem Spektrometer!


Aufgabe 2) (4 Punkte)

- a) Definieren Sie die Begriffe Quantenausbeute und Lichtausbeute!
- b) Welche Messgrößen müssen Sie bestimmen und welche Spektren müssen Sie aufnehmen, um die Quantenausbeute bzw. die Lichtausbeute eines Leuchtstoffes zu bestimmen?

Aufgabe 3) (10 Punkte)

Eine Probe des grün emittierenden Fluoreszenzlampenleuchtstoffes LaPO₄:Ce,Tb liefert bei der Anregung mit 254 nm Strahlung das folgende vereinfachte Emissionsspektrum:

Vereinfachtes Emissionsspektrum von LaPO₄:Ce,Tb

a) Berechnen Sie mit Hilfe der folgenden Tabelle das Lumenäquivalent Φ_V der Probe (K_{max} = 683 lm/W)!

λ [nm]	V(λ)	λ [nm]	V(λ)	λ [nm]	V(λ)
380	3.90044E-5	520	0.71	660	0.061
385	6.39971E-5	525	0.7932	665	0.04458
390	1.2E-4	530	0.862	670	0.032
395	2.16999E-4	535	0.91485	675	0.0232
400	3.96003E-4	540	0.954	680	0.017
405	6.4E-4	545	0.9803	685	0.01192
410	0.00121	550	0.99495	690	0.00821
415	0.00218	555	1	695	0.00572
420	0.004	560	0.995	700	0.0041
425	0.0073	565	0.9786	705	0.00293
430	0.0116	570	0.952	710	0.00209
435	0.01684	575	0.9154	715	0.00148
440	0.023	580	0.87	720	0.00105
445	0.0298	585	0.8163	725	7.4E-4
450	0.038	590	0.757	730	5.2E-4
455	0.048	595	0.6949	735	3.61098E-4
460	0.06	600	0.631	740	2.49195E-4

465	0.0739	605	0.5668	745	1.71903E-4
470	0.09098	610	0.503	750	1.2E-4
475	0.1126	615	0.4412	755	8.48023E-5
480	0.13902	620	0.381	760	6E-5
485	0.1693	625	0.321	765	4.24012E-5
490	0.20802	630	0.265	770	3E-5
495	0.2586	635	0.217	775	2.12006E-5
500	0.323	640	0.175	780	1.49927E-5
505	0.4073	645	0.1382	785	1.06003E-5
510	0.503	650	0.107	790	7.42313E-6
515	0.6082	655	0.0816		

b) Zur Bestimmung der Quantenausbeute $\Phi_{\text{Probe},254}$ der Probe wurden weiterhin folgende Messwerte aufgenommen:

Probe	$\Phi_{254 [\%]}$	R_{254} [%]	<u>I</u> ₂₅₄
Black (Schwarzstandard)	-	-	24190
LaPO ₄ :Ce,Tb (Referenz)	95.0	9.5	1523057
LaPO ₄ :Ce,Tb (Probe)	?	10.0	1459980

Berechnen Sie aus den obigen Angaben die Quantenausbeute $\Phi_{\text{Probe},254}$ und die Lichtausbeute $LO_{\text{Probe},254}$ des LaPO₄:Ce,Tb Leuchtstoffes!

Aufgabe 4) (8 Punkte)

Sie haben folgende grün-emittierende Leuchtstoffe eingekauft:

 $(Y,Gd)BO_3:Tb$ $LaPO_4:Ce,Tb$ $Zn_2SiO_4:Mn$ $BaMgAl_{10}O_{17}:Eu,Mn$ $SrSi_2N_2O_2:Eu$

- a) Welche spektroskopischen Messungen müssen Sie durchführen, um zu entscheiden, welche dieser Materialien für Plasmafernseher ($\lambda_{exc}=172$ nm, Bildwiederholfrequenz 100 Hz), für Fluoreszenzlampen ($\lambda_{exc}=254$ nm) oder für blaue Leuchtdioden ($\lambda_{exc}=460$ nm) geeignet sind?
- b) Welche physikalischen bzw. photometrischen Größen müssen Sie aus den Spektren ableiten, um zu entscheiden, ob diese Materialien für die eine oder andere Anwendung geeignet sind?

Aufgabe 5) (6 Punkte)

Welche Strahlungsquelle würden Sie verwenden, um folgende spektroskopischen Messungen durchzuführen?

- a) Anregungsspektrum im Bereich 110 300 nm
- b) Anregungsspektrum im Bereich 250 500 nm
- c) Abklingkurve eines Eu³⁺-Leuchtstoffes bei 395 nm Anregung
- d) Reflexionsspektrum im Bereich 250 750 nm
- e) Transmissionsspektrum im Bereich 350 1500 nm
- f) Reflexionsspektrum im Bereich 110 300 nm