Übungsaufgaben zur Qualitativen Analyse

- 1. Warum darf man Cyanid-Abfälle niemals ansäuern?
- 2. Wie müssen Alkalimetalle aufbewahrt werden? Weshalb ist der Kontakt mit halogenhaltigen Lösungsmitteln unbedingt zu vermeiden? Was muss bei der Vernichtung von Alkalimetallresten beachtet werden?
- 3. Welche Folgen sind bei der Zugabe von konz. H₂SO₄ zu Perchloraten, Nitraten, Peroxiden, Permanganat und Chlorat zu erwarten, speziell bei Gegenwart von organischen Verbindungen?
- 4. Was versteht man im biochemischen Sinn unter Vergiftung und unter Mangelerscheinung?
- 5. Wovon hängt die Giftigkeit von Metallsalzen ab? Erläutern Sie den Sachverhalt am Beispiel von Ba²⁺-Salzen!
- 6. Erläutern Sie, warum Benzol viel giftiger als Toluol und Chromate viel giftiger als Cr³+- Verbindungen sind!
- 7. Warum erwärmen sich konzentrierte Säuren beim Mischen mit Wasser?
- 8. Wie reagiert Zink mit verdünnter H₂SO₄, konz. H₂SO₄, verd. HCl bzw. konz. HCl?
- 9. Um welchen Reaktionstyp handelt es sich bei der Darstellung von elementarem Chlor aus PbO₂ und HCl?
- 10. Zu einer wäßrigen Nal- bzw. KBr-Lösung (farblos) wird tropfenweise Cl₂-Wasser gegeben. Warum tritt in beiden Fällen eine gelbbraune Farbe der Lösung auf? Werden die erhaltenen Lösungen jeweils mit etwas Chloroform unterschichtet, färbt sich nach Phasentrennung das Chloroform im einen Fall violett, im anderen Fall braun. Erklären Sie diese Phänomene!
- 11. Wie können Sie einen Ag₂CO₃- von einem AgCl-Niederschlag unterscheiden?
- 12. Wie können Sie beim Sulfatnachweis den auftretenden BaSO₄-Niederschlag von eventuell auftretendem BaCO₃ oder BaCl₂ unterscheiden?
- 13. Was versteht man unter dem Begriff "Konzentrationsniederschlag"?
- 14. Welcher Zusammenhang besteht zwischen folgenden Verbindungspaaren?
 - a) SO₂ und H₂SO₃
 - b) SO₃ und H₂SO₄
 - c) CaO und Ca(OH)₂
- 15. Nennen Sie die gängigen Oxidationszahlen von Schwefel und geben Sie jeweils ein Beispiel für eine Verbindung an!
- 16. Geben Sie eine qualitative Erklärung für die unterschiedlichen Reaktionen verschieden konzentrierter Salpetersäuren mit Zink an. Mit welcher physikalischen Größe kann die Oxidations- oder Reduktionswirkung chemischer Verbindungen beschrieben werden?
- 17. Wird CO₂ in Barytwasser eingeleitet, setzt nach kurzer Zeit eine Trübung ein. Zugesetztes Phenolphthalein, zunächst noch violett, entfärbt sich beim weiteren Einleiten von CO₂, anschließend wird eine allmähliche Verringerung des Niederschlages beobachtet, die schließlich in einer klaren Lösung resultiert. Wird eine Probe dieser Lösung erhitzt, setzt erneut Trübung ein. Wird eine weitere Probe mit NH₃ versetzt, entsteht ebenfalls wieder ein Niederschlag. Erläutern Sie die beobachteten Phänomene mit Reaktionsgleichungen!
- 18. Erläutern Sie die exotherme Reaktion beim Einleiten von HX (X = F, Cl, Br, I) in Wasser! Welche der wäßrigen Lösungen von HX ist die stärkste Säure?

19. Was passiert beim Lösen von P₂O₅ in Wasser? Wie kann der PO₄³⁻-Anteil in dieser Lösung erhöht werden?

- 20. Welche Produkte entstehen beim Erhitzen folgender Substanzen?
 - a) Borsäure
 - b) Borax,
 - c) NH₄NO₃,
 - d) NH₄NO₂?
- 21. Warum sind +III und +V die stabilsten Oxidationsstufen von Phosphor? Geben Sie jeweils ein Beispiel an!
- 22. Welche Substanz entsteht beim Erhitzen von Magnesiumammoniumphosphat? Welcher Reaktionstyp liegt hier vor?
- 23. Auf welchen chemischen Reaktionen basiert die technische Herstellung konzentrierter Schwefelsäure?
- 24. Wie lässt sich das Element Eisen technisch aus Eisenoxid herstellen? (Reaktionsgleichungen und –bedingungen angeben!)
- 25. Erläutern Sie den Aufbau der in der Natur vorkommenden Modifikationen des Kohlenstoffs!
- 26. a) Erläutern Sie die Begriffe Säure und Base nach der Brønsted-Theorie.
 - b) Wie verhalten sich wäßrige Lösungen von Natriumacetat, Ammoniumchlorid bzw. Calciumchlorid: Neutral, sauer oder alkalisch? Reaktionsgleichungen angeben!
- 27. a) Definieren Sie die Begriffe Gitterenergie und Hydratationsenergie!
 - b) Erklären mit Hilfe dieser Begriffe, warum NaCl leichtlöslich und AgCl schwerlöslich ist!
- 28. Wie reagieren Alkalimetalle mit Wasser? (Reaktionsgleichung angeben!)
- 29. Wie kann man mit Hilfe der Flammenfärbung Kalium neben Natrium nachweisen?
- 30. Warum werden die Reaktionen von Ammonium zusammen mit denen von Kalium und Natrium behandelt?
- 31. Worauf beruht der Nachweis von Ammonium mit Natron- oder Kalilauge?
- 32. Wie ändert sich die Löslichkeit folgender Salze der Erdalkalimetalle? a) Sulfate, b) Hydroxide, c) Chromate, d) Carbonate?
- 33. Beim Glühen von Calciumoxalat entstehen CO und CO₂. Erklären Sie diese Beobachtung über die Oxidationszahlen des Kohlenstoffs im Oxalat!
- 34. Warum muß der Nachweis von Mg²⁺ als MgNH₄PO₄ aus ammoniakalischer Lösung erfolgen?
- 35. Warum fällt bei Zugabe von NH₄Cl und NH₃ zu einer wäßrigen Mg²⁺-Lösung kein Mg(OH)₂ aus? (Massenwirkungsgesetz)
- 36. Was entsteht beim Behandeln von
 - a) SnS, SnS₂
 - b) As_2S_3 , As_2S_5
 - c) Sb_2S_3 , Sb_2S_5
 - d) CuS
 - e) PbS
 - f) HgS
 - mit LiOH/KNO₃-Lösung? Was passiert beim Wiederansäuern der Lösungen?
- 37. Was entsteht bei der Reaktion von Boraten mit Alkoholen in Gegenwart einer Säure?

- 38. Was versteht man unter der Leuchtprobe?
- 39. Welche Vorprobe eignet sich zum Nachweis von As und Sb? Welches leider nicht eindeutige Kriterium deutet an, ob As oder Sb vorliegt?
- 40. Eine Lösung enthält Sb³⁺ und Pb²⁺. Beschreiben Sie mit Hilfe von Reaktionsgleichungen, wie Sie die Ionen voneinander trennen und nachweisen können!
- 41. Eine Lösung enthält Cu²⁺, Sb³⁺ und Bi³⁺. Beschreiben Sie mit Hilfe von Reaktionsgleichungen, wie Sie die Ionen voneinander trennen und nachweisen können!
- 42. Eine salpetersaure Lösung enthält Pb²⁺ und Cu²⁺. Beschreiben Sie mit Hilfe von Reaktionsgleichungen, wie Sie diese Ionen trennen und qualitativ nachweisen können!
- 43. Warum löst sich Aluminium in Natronlauge und Salzsäure, aber nicht in Wasser? Wie nennt man diesen Effekt und bei welchen Metallen tritt dies noch auf?
- 44. In welcher Form liegen die entsprechenden Ionen in stark alkalischer bzw. stark saurer Lösung vor?
- 45. Warum fällt Al(OH)₃ aus mit NH₃ und NH₄Cl versetzten Lösungen aus, nicht aber Mg(OH)₂?
- 46. Wie nennt man Hydroxide, die sich sowohl in Laugen als auch in Säuren lösen?
- 47. Wie ändert sich die Säure- bzw. Basenstärke innerhalb einer Periode, innerhalb einer Gruppe, in Abhängigkeit von der Oxidationszahl?
- 48. Welches der Cyanoferrate ergibt mit Fe²⁺, welches mit Fe³⁺ Berliner Blau?
- 49. Was besagt die Endung "-at" in Chromat, Sulfat, Nitrat, Carbonat? Formulieren Sie die Reaktionsgleichung für die Oxidation von HBr mit K₂Cr₂O₇ in saurer Lösung. Warum läßt sich Cr³⁺ in alkalischer Lösung mit Br₂ zu Chromat oxidieren?
- 50. Formulieren Sie die Reaktionsgleichung für die Oxidation von Cr³+ mit H₂O₂ in alkalischer Lösung1
- 51. Welche Reaktionen eignen sich zum Nachweis von Co, Ni, Mn?
- 52. In welchen Wertigkeitsstufen kommt Mangan vor?
- 53. Formulieren Sie die Reaktionsgleichungen für die Oxidation von H₂O₂ mit KMnO₄ in saurer Lösung!
- 54. Welche Verbindung bildet sich bei der Reduktion von KMnO₄ in alkalischer Lösung, zum Beispiel mit H₂O₂ oder Mn²⁺? (Reaktionsgleichung angeben!)
- 55. Die wäßrige Lösung einer grünlich gefärbten Substanz wird in zwei Teile geteilt. Beim Versetzen eines Teils mit BaCl₂-Lösung fällt ein weißer, in Säuren unlöslicher Niederschlag aus. Der zweite Teil wird in eine stark alkalische Lösung, die H₂O₂ enthält, gegossen und aufgekocht. Der braune Niederschlag, der sich hierbei gebildet hat, ist in Salzsäure löslich. Nach Zugabe von KSCN fällt ein roter Niederschlag aus dieser Lösung aus. Um welche Substanz handelt es sich? Geben Sie die Reaktionsgleichungen zu den genannten Vorgängen an!
- 56. Wie kann man die folgenden Kationen qualitativ nachweisen? (Reaktionsgleichung angeben!)
 - a) Fe³⁺
 - b) Zn²⁺
 - c) Mn²⁺
 - d) Ba²⁺

57. Wird Cr³⁺ bevorzugt in saurer oder alkalischer Lösung durch Br₂ zu Chromat oxidiert Argumentieren Sie mit einer Reaktionsgleichung und dem Massenwirkungsgesetz!

- 58. Was versteht man unter einem Sodaauszug und wie wird er durchgeführt? Wie können Sie diese Anionen nachweisen (Reaktionsgleichungen)? Cl-, NO₃-, SO₄-, CO₃-, BO₃-, PO₄-, BO₃-, BO₃-,
- 59. Die wäßrige Lösung einer schwach rosafarbenen Substanz ergibt bei Zugabe von AgNO₃-Lösung einen gelblichen, schwerlöslichen Niederschlag. Nach dem Abtrennen dieser Fällung versetzt man das Filtrat mit konz. HNO₃ und PbO₂. Nach längerem Aufkochen färbt sich die Lösung tiefviolett. Den zu Beginn abgetrennten, gelben Niederschlag löst man in verd. H₂SO₄ und Zn. Dabei entsteht ein dunkler Niederschlag, welcher zusammen mit unverbrauchtem Zink abgetrennt wird. Die verbleibende Lösung unterschichtet man mit CCl₄ und gibt dann tropfenweise Cl₂-Wasser zu. Nach dem Ausschütteln ist die organische Phase braun gefärbt. Um welche Verbindung handelt es sich? Geben Sie die Reaktionsgleichungen für die oben beschriebenen Vorgänge an!
- 60. Eine Substanz zeigt folgende Reaktionen:

Sie ist in Wasser leichtlöslich. Nach dem Ansäuern dieser Lösung mit HNO₃ und Zugabe von PbO₂ färbt sich die Lösung beim Kochen tiefviolett. Aus der mit HNO₃ angesäuerten Lösung fällt nach Zugabe von AgNO₃-Lösung ein weißer Niederschlag, der sich nach NH₃-Zugabe wieder auflöst.

Wie heißt diese Verbindung?

Erklären Sie das Reaktionsverhalten anhand von Reaktionsgleichungen!

- 61. Welche Oxidationszahlen haben die Elemente in den folgenden Verbindungen?
 - a) H₂SO₄
 - b) Ni_2S_3
 - c) FeS₂
- 62. Beim Ansäuern einer Chromatlösung tritt ein Farbwechsel von gelb nach orange auf. Erklären Sie diesen Befund anhand von Reaktionsgleichungen!
- 63. Geben Sie die Oxidationsstufe von lod in den folgenden Verbindungen an!
 - a) I
 - b) IO₃
 - c) IO
 - d) CI₄
- 64. Geben Sie die Valenzstrichformeln der folgenden Verbindungen an! AlCl₃, CS₂, XeF₂, NOCl, PCl₄⁺, NH₃, NO₂, SO₂, Cl₂CO, SiH₂, BrF₃, CH₄, NH₃, H₂S Welche Geometrien besitzen sie? Geben Sie die Oxidationszahlen der Zentralatome an!
- 65. Für welche Elemente ist die Bleitiegelprobe eine Nachweismethode (Reaktionsgleichungen!)?
- 66. Vervollständigen Sie die folgenden Reaktionsgleichungen!

```
a) SrCO_3 + H_2SO_4
```

- b) $CrO_4^{2} + H_3O^{+}$
- c) Cu + HNO₃
- d) $Cu^{2+} + I^{-}$
- e) MnO_4 + H_2SO_3
- f) $Ag^+ + NH_3$
- g) AI^0 + NaOH + H₂O
- h) $Mn^{2+} + S_2O_8^{2-} + H_2O_8^{2-}$
- i) $As^{3+} + BrO_3$
- \dot{j}) MnQ₄ + $\dot{C}_2\dot{O}_4^2$ + \dot{H}^+
- k) $Cr^{3+} + OH^{-} + H_2O_2$
- I) $Ag + O_2 + H_2S$
- m) $MnO_4 + Br + H_3O^+$