Einfluss der Dotierung mit einem Lanthanoidion Ln³+ auf das Emissionsspektrum von Y₃Al₅O₁₂:Ce

Lanthan La³⁺ bei geringer Konzentration keine Störung bekannt

Bei hohen Konz. (> 5%) Bildung von LaAlO₃:Ce

Cer Ce³⁺ Ab ca. 0,1% Ce³⁺ effiziente 4f-5d Kathodo-, Photo-

& Radiolumineszenz

Mit steigender Ce³⁺-Konzentration Rotverschiebung

der Emission durch Reabsorption

Praseodym Pr³⁺ Löschung der Ce³⁺ Emission und zusätzlich rote 4f-

4f Linienemission bei 580 – 700 nm (Pr³⁺)

Neodym Nd³⁺ Löschung der Ce³⁺ Emission und 4f-4f

Linienemission im NIR-Bereich

Promethium Pm³⁺ Radioaktivität führt zu Selbstaktivierung

Samarium Sm³⁺ Löschung der Ce³⁺ Emission und rote 4f-4f

Linienemission bei 620 nm (Sm³⁺)

Europium Eu³⁺ Löschung durch "Metal-to-Metal Charge Transfer":

 $Ce^{3+} + Eu^{3+} \rightarrow Ce^{4+} + Eu^{2+}$

Gadolinium Gd³⁺ Rotverschiebung der Ce³⁺-Emissionsbande n

Terbium Tb³⁺ Rotverschiebung der Ce³⁺-Emissionsbande und

grüne 4f-4f Linienemission (Tb³⁺)

Dysprosium Dy³⁺ Löschung der Ce³⁺ Emission & Emission bei 575 nm

Holmium Ho³⁺ Löschung der Ce³⁺ Emission

Erbium Er³⁺ Löschung der Ce³⁺ Emission sowie blaue und grüne

4f-4f Linienemission (Er³⁺)

Thulium Tm³⁺ Löschung der Ce³⁺ Emission und Linienemission im

UV-, VIS- und im IR-Bereich

Ytterbium Yb³⁺ Löschung der Ce³⁺ Emission & Emission bei 980 nm

Lutetium Lu³⁺ Blauverschiebung der Ce³⁺ Emissionsbanden