

Materials for an Energy Efficient Society

Prof. Dr. Thomas Jüstel

Institute for Optical Technologies, Dpt. Chemical Engineering Münster University of Applied Sciences

Steinfurt/Münster, September 09th, 2021

To My Person

<u>CV</u>

- University Bochum (1987 1994)
- Max-Planck Institute Mülheim (1995) Electrochemistry
- Philips Research Aachen (1995 2004) Solid State Chemistry, Luminescence
- Münster University of Applied Sciences (since 2004)
- Dean of department
 "Chemical Engineering" (since 2013)

Teaching

- Inorganic Chemistry
 - Solid state chemistry
 - Coordination chemistry
 - Bioinorganic chemistry
- Material Science
 - Optical materials
 - Luminescent materials
 - Material characterisation
- Incoherent Light Sources, Photochemical Water Treat. & History of Science

Coordination Chemistry

Solid State Chemistry, Lum Scintillators

Functional Optical Materials

Research Group Tailored Optical Materials

Prof. Dr. Thomas Jüstel Stegerwaldstr. 39 D-48565 Steinfurt Tel 02551/9-62100 e-mail: tj@fh-muenster.de http://www.fh-muenster.de/juestel skype: thomasjuestel

Research Areas

FH MÜNSTER

University of Applied Sciences

- Luminescent Pigments
- Luminescence Physics
- Nanoscale Pigments
- Core-Shell particles (coatings)
 - Optical Spectroscopy
 - Solid State Chemistry

Research Group Tailored Optical Materials

FH MÜNSTER

Jniversity of Applied Sciences

Outline

- 1. Challenges of the 21st century
- 2. Metals and Materials
- 3. Matter Radiation Interaction
- 4. Photovoltaic Materials
- 5. Photochemical Water Splitting
- 6. Lighting Towards Ultimate Efficiency
- 7. Conclusions and Outlook
- 8. Literature

1. Challenges of the 21st Century

- Overview -

Increasing land and water consumption

- Endangering the safety of drinking water and food supply
- Loss of arable land and pasture
- Evaporation of sweetwater lakes

Increasing demand on raw materials endangers ressource security

- Strategic metals: Li, Co, Cu, Ga, Ge, In, rare earth metals, W, Ir, Bi, ...
- Plastic crises: µ-plastics, biopolymers, recycling, critical additives and optical marker
- Quarz crisis: Extremely growing demand on constructing materials
- Phosphate crisis: Mines are driven at the limits
- Iridium crisis: Water purification process via electrochlorination increases demand

• µ-Microplastics and input of nutrients into biosphere

- Endangering marine and terrestric food chains
- Reduction of biodiversity
- Expansion of dead zones in oceans

Emission of greenhouse gases and climate change

- Energy production without CO_2 emission: PV, Wind \rightarrow H₂, PtG, LNG, Batteries
- CO₂ deposition: $1 \cdot 10^{12}$ t CO₂ until 2100 for 2° Goal (SdW 08/19) \rightarrow geochemistry?
- New types of mobility: Electrical engines, fuel cells, artificial fuels

1. Challenges of the 21st Century - Air, Soil, and Water Pollution -

Reduce or prevent application of hazardous substances

- Radioactive materials, U, Th, T, Pm,
- Heavy metals, e.g. Hg, Tl, Pb, Cd,
- Toxic, bioactive, or non-biodegradable organic compounds → plastics: "Great Pacific Garbage Patch"
- 2050: More plastic than fish in ocean water!
- \Rightarrow Apply green chemistry: Technologies that
- minimize or preferably eliminate the formation of waste
- avoid use of toxic & hazardous solvents and reagents
- utilize renewable raw materials
- are energy efficient

Weltweite und europäische Produktionsmenge von Kunststoff in den Jahren vo 1950 bis 2017 (in Millionen Tonnen)

- Bioreactors
- Catalysis
- Photochemistry
- Solar chemistry
- Fast analytics @ point of use

 \rightarrow Biochemistry, microorganism design

- → Catalytic pigments/coatings, reactor design
- \rightarrow Frequency selective radiation sources
- → Solar radiation + converter or concentrator
- \rightarrow Advanced optical spectroscopy

1. Challenges of the 21st Century - Air, Soil, and Water Pollution -

• UV-C Radiation (265 nm) inactivates micro organisms due to photochemistry of DNA 1000 • VUV Radiation (180 - 200 nm) oxidizes due to H₂O cleavage into radical species and O₂ to O₃ conversion Industrial installations \rightarrow discharge lamps 0 Mobile devices \rightarrow discharge lamps / (laser) diodes 1900

1. Challenges of the 21st Century - Demand for Strategic Metals -

- Electric & hybrid vehicles (~30 kg Rare Earth / hybrid car): Growing mobility! Co, Li (ion batteries), Rare Earth Elements (REE), Cu
- Fuel cells Pt, (Ru, Pd, Au)
- Thermoelectrics, Optoelectronics, ILEDs, OLEDs, (µ-LED) displays

Bi, Te, Si, In, Ga, As, Se, Ge, Sb, Ir, Pt

Photo voltaics

Si, Ag, In, Ga, Se, Te, Ge, (Ru)

• Wind turbines, generators, electrical engines, magnets Nd, Sm, Pr, Dy, Cu

1. Challenges of the 21st Century - Dissipation of Heavy Metals -

- Hg from discharge lamps, batteries, thermometers, combustion of coal ends up at earth's cold spots, mainly at polar regions
- Pb and Ba from accumulators, displays, and high refractive glass ends up in Ca metabolism
- Sn from paints goes into aquatic system + reacts to toxic metalorganic compounds
- Cr, As, Sb, and Bi from paints, pigments modify DNA
- Ga and In from LEDs, LCDs, OLEDs are harmful to the kidney and liver metabolism

- Cu, Ag, Pt, and Au from electronic devices are bioactive
- Actinides from nuclear industry, U also from artificial fertilisers (phosphates)

1. Challenges of the 21st Century - Climate Change Due to CO₂ Emission -

- Increased renewables in power generation and biofuels
- Improved efficiency and fuel switching in the power sector
- Demand-side electricity-efficiency measures

Demand-side fossil-fuel-efficiency measures

Source: International Energy Agency World Energy Outlook 2006

Further consequences of CO₂ emission

- Acidification of oceans: endanger marine ecosystems
- Reduction of glacier and polar ice: sea water level rise
- Modification of plant physiology: increasing sugar content
- Increasing water and soil temperature: Emission of CH₄ from permafrost areas
- Reduction of air quality

1. Challenges of the 21st Century - Climate Change Due to other Greenhouse Gas Emission -

Prot. Dr. T. Gistel, Münster University of Applied Sciences, Cermany and Covince of Applied Sciences, Cermany

1. Challenges of the 21st Century - Climate Change Due to Greenhouse Gases -

Greenhouse gas potential depends on the absorption spectra of trace gases and average global temperature of the Earth's surface ($T_e \sim 288 \text{ K} \sim \text{Planck spectrum}$)

1. Challenges of the 21st Century - Loss in Brain Power Due to CO₂ Emission -

1. Challenges of the 21st Century - Causes of Greenhouse Gas Emission -

Illumination

- Transport
- Buildings
- IT
- Steel production
- Cement production
- Ammonia synthesis
- Chloralkali electrolysis

LED technology

(5%)

(6%)

(2%)

(5%)

(6-7%)

(1-2%)

(~1%)

- (~ 25%) Novel engines and fuels
 - Thermal insulation
 - Server architecture, PV use
 - H₂ as reductive agent
 - Reduction of cement fraction in concret
 - N₂ hydration by water vapor, N₂ photolysis
 - Change to membrane process, heat recovery

CH₄/N₂O

- Agriculture and feedstock
- HNO₃ and Nylon production

SF₆/NF₃

(Consumer) Electronics

Reduction of meat consumption Optimisation of Ostwald process,

Other insulator gases, optimisation of processes for the production of displays & solar cells

1. Challenges of the 21st Century Energy Efficient Date Storage and Transfer: Rebound Effect

Discoveries & inventions for knowledge management

- 1015 Ibn Al Haythem (Basra, 965 1040) "Book of Optics"
- 1455 Gutenberg Bible: 1st book printed with movable metal types
- 1815 Fresnel and the wave nature of light
- 1865 Maxwell and electromagnetic waves
- **1915** General relativity light in space and time
- 1945 Z4 of Konrad Zuse (2200 Relais)
- 1965 Cosmic microwave background & Optical fibre technology
- 1989 Birth year of the WWW
- 2002 Beginning of the digital age
- 2007 ~ 300 exabyte stored
- 2010 50 Gbps transmitter (by four laser)
- 2014 Data transfer rate > 100 Gbps
- 2015 International Year of Light (IYL), > 1 ZB stored....
- 2018 ~ 4-5 ZB stored, 1+ bill. google searches, 294 bill. mails, and 230 mill. tweets/day
- 2020 ~ 44 ZB stored
- 2030 Internet ~ 21% of projected electricity demand (Ref.: Nature 561 (2018) 163)

Energy demand / bit \downarrow

Efficiency ↑

Limit: E_{bit,min} = In(2) k_B·T

1

2. Metals and Materials - Electronics 18

1 H	2							G	rou	DS		13	14	15	16	17	2 He	1
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	2
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 [54 Xe	5 P e
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 RC	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6 6
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	Ds	111 Rg		113 Nh	114 Fl	115 Мс	116 Lv	117 Ts	118 Og	
							-	-										
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	6
90 91 92 93 94 95 96 97 98 99 100 101 102 103 7 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 7											7							
Ene	Energy storage materials Detectors/catalysts																	
Act	Active or passive componentsSolid oxid fuel cells (components))							
Ele	Electrical engines/magnets Electrode/conductor materials																	

Filling of metal halide lamps Electrode component Activator in phosphors/laser gain media Host component of phosphors/laser gain media

Transition Metals

Electron configuration of the 3d transition metals											
	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	•
4s	2	2	2	1	2	2	2	2	1	2	
3d	1	2	3	5	5	6	7	8	10	10	
Electro	on con	figur	atior	of th	e 4d	trans	ition	meta	ls		•
	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	•
5s	2	2	1	1	1	1	1	0	1	2	•
4d	1	2	4	5	6	7	8	10	10	10	
Electro	on con	figur	atior	n of th	e 5d	trans	ition	meta	ls		•
	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	
6s	2	2	2	2	2	2	2	1	1	2	
5d	1	2	3	4	5	6	7	9	10	10	

Transition metals are very common catalysts due to

- many redox states
- coordinative bonds
- crystal-field effects
- high-spin ↔ low-spin transitions
- cluster formation
- magnetic interaction
- rather high abundance of 3d transition metals and thus reasonable costs
- long-term catalytic activity (Ru, Rh, Pd, Re, Ir, and Pt)
 - ⇒ Stable configurations due to lower energetic states of the nd-orbitals

The Transition Metal Iron

<u>Use in Ferrites</u> Magneto ceramic materials

⇒ Binary/ternary iron oxides

Soft ferrites

- are easily and efficiently magnetised by an external magnetic field
- Magnets in writing and reading heads in audio and video recorders, hard drives etc.
- Electrical isolators, ferrimagnetic compounds with low saturation magnetisation in combination with low anisotropy in terms of the crystal structure
- MFe_2O_4 (spinels) with $M = Zn^{2+}, Mn^{2+}, Ni^{2+}, Co^{2+}, Mg^{2+}$
- Typical composition: Fe-Mn-Zn-oxide with 70% Fe, 25% Mn, and 5% Zn

Hard ferrites

- maintain their magnetic properties after the initial magnetisation
- Permanent magnets in electric motors, speaker, generators, and son on
- $MFe_{12}O_{19}$ with $M = Sr^{2+}$, Ba^{2+}

The Transition Metal Manganese

Mn lons in (photo)catalysis

- a) Mn dependent catalase
- b) Percarbonate decomposition
- c) Superoxide dismutase
- d) Photosystem II
- e) Photocatalytic water splitting

Mn lons in photoluminescence

- a) Green CRT and PDP phosphor
- b) Green FL phosphor
- c) Orange electroluminesc. pigment
- d) Dichromatic FL phosphor
- e) Red LED phosphor
- f) Deep red FL phosphor

 $\begin{array}{l} 2 \ H_2O_2 \rightarrow 2 \ H_2O + O_2 \\ 2 \ Na_2CO_3 \cdot H_2O_2 \rightarrow 2Na_2CO_3 + 2H_2O + \ ^1O_2 \\ O_2^{-\cdot} + \ Mn^{3+} \rightarrow O_2 + \ Mn^{2+} \\ 2 \ H_2O \ \rightarrow 4 \ H^+ + 4 \ e^- + O_2 \\ 2 \ H_2O \ \rightarrow 2 \ H_2 + O_2 \end{array}$

 $Zn_{2}SiO_{4}:Mn^{2+}$ $BaMgAl_{10}O_{17}:Eu^{2+}Mn^{2+}$ $ZnS:Mn^{2+}$ $Ca_{5}(PO_{4})_{3}(F,CI):Sb^{3+}Mn^{2+}$ $K_{2}SiF_{6}:Mn^{4+}$ $Mg_{14}Ge_{5}O_{24}:Mn^{4+}$

Mg₁₃LiGe₅O₂₃F:Mn

Rare Earth Metals

Metals															
[Xe]	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
6s	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5d	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1
4f	0	1	3	4	5	6	7	7	9	10	11	12	13	14	14
Cations															
[Xe]	La ³⁺	Ce ³⁺	Pr ³⁺	Nd ³⁺	Pm ³⁺	Sm ³⁺	Eu ³⁴	Gd ³	+ Tb ³	³⁺ Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	Lu ³⁺
	Ce ⁴⁺	Pr ⁴⁺	Nd ⁴⁺				Sm ²	²⁺ Eu ²	+ Dy	4+				Tm ²⁺	Yb ²⁺
								Tb ⁴⁺	•						
4f	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Electron	conf	<u>igura</u>	<u>tion</u>		m _l =	-3 -2	-1 0	123	3.	-2 -1() 1 2	0	-1 0) 1	
e.g. of G	d ³⁺ /E	u ²⁺ /Tk	0 ⁴⁺ [X	e]4f ⁷		\uparrow \uparrow	↑ ↑ 4f	↑ ↑ 1		5	d				
Ce ³⁺ - Yb	³⁺ , Pr	⁴⁺ , Nc	d⁴+, TI	o⁴+, D	y⁴+, S⊧	m²+, E	u ²⁺ , T	⁻ m ²⁺		→ p	arama	igneti	c ions	P	T DT
	, ∪y ⁰									\rightarrow ie	erroma	agneti	c orde	ering (

Rare Earth Alloys and Compounds: Application Areas in Electrics

Magnets	Superconductors	Ion Conductors	Thermistors
Engines, generators, speakers, micro-	NMR devices	Fuel cells	Temperature sensors
phones, telephones,	Particle accelerators	Lambda probes	Inrush current limiter
headphones, hearing aids, magnetic couplers, sensors,	Fusion reactors	Sensors	Voltage stabilisers
cranes, overhead platforms,	SQUIDs		
• ,			
		LaCoO ₃ :Sr	
Nd ₂ F'e ₁₄ В SmCo ₅ Sm ₂ Co ₁₇	(La.Ba) ₂ CuO ₄ YBa ₂ Cu ₃ O ₇	CeO ₂ :Sm ZrO ₂ :Y LaCeO ₃ :Ba	Sm ₂ O ₃ -Tb ₂ O ₃

Rare Earth Alloys and Compounds: Advantages in Magnets

Highly paramagnetic as cations

- $Gd^{3+} \Rightarrow$ magnetic contras agent [Gd³⁺(dota)]
- Dy³⁺/Ho³⁺ ⇒ maximal magnetic moment of all elemental cations ~ 10.6 μ_B
- For comparison: Fe³⁺/Mn²⁺ μ_{eff} = 5.9 μ_B

Ferromagnetic as metal or alloy

- Gd/Tb/Dy
- Nd₂Fe₁₄B
- SmCo₅ and Sm₂Co₁₇

As building block in ferromagnetic materials

- Y₃Fe₅O₁₂ ,,YIG"
- Gd₃Fe₅O₁₂ "GdIG"

Ferromagnetic ordering in 4f ferromagnets

lorth sea Belgium

550 Kg

NC

2. Metals and Materials

Application Areas of Nd₂Fe₁₄B, SmCo₅, and Sm₂Co₁₇

Application in electric engines in automotive industry > 25 actuating motors per car electric drive & brake

Hard Disc Drives (HDDs) Magnets: 2 wt-% of HDD

Wind power stations Off-shore: 650 kg Nd/station ~ 100 kg/MW power output

Magnetic Properties of TM and RE Based Alloys

Important figures of magnetic materials:

- Coercitive field strength \Rightarrow Soft- or hard magnetic materials
- Energy density \Rightarrow Conversion efficiency

Alloy	Coercitive field strength H _c [kA/m]	Typical energy density (BH) _{max} [kJ/m ³]
Steel (0.9% C, 1.0% Mn)	4	1.6
Martensitic Steel (9% Co)	11	3.3
AlNiCo (21% Ni, 12% Al, 5% Co, Fe)	35	11
CuNiFe (60% Cu, 20% Fe, 20% Ni)	44	12
SrFe ₁₂ O ₁₉	260	29
SmCo ₅	760	200
Sm ₂ Co ₁₇	720	250
Nd ₂ Fe ₁₄ B:Dy,Pr	880	360

Replacement of Nd₂Fe₁₄B, SmCo₅, and Sm₂Co₁₇?

- Permanent magnets on the basis of iron oxides by addition of other oxides? Problem: Energy product (BH)_{max} ~ 10times smaller than that of RE magnets ⇒ Not applicable in high performance engines and turbines!
- Nanoscale Fe/Co compounds?
 Nano rods with magnetic ordering resulting in a matrix of particles which are equal to ferromagnetic domains
 ⇒ Rather demanding technology
- Molecular magnets?
 [Mn₁₂O₁₂(CH₃COO)₁₆(H₂O)₄]·2CH₃COOH·4H₂O "Mn₁₂ac" Prussian Blu analagous: "Fe₄" or "Fe₈" ⇒ long-term R&D projects

FH MÜNSTER University of Applied Sciences

2. Metals and Materials

Optical Properties of RE: Absorption

Highly refractive glasses for lenses La La_2O_3 in cameras or telescopes (Galilei type)

- Ce_2O_3/CeO_2 UV filters in light sources Ce
- Pr Pr_2O_3/PrO_2
- Nd Nd_2O_3
- Tb KTb_3F_{10} Tb₃Ga₅O₁₂

- **Colour filters**
- **Colour filters**

Y203

Typical L	<u>.ine emitter</u>
Pr ³⁺	Scintillators
Nd ³⁺	Laser gain media
Sm ^{2+/3+}	Detectors
Eu ³⁺	Fluorescent lamps
Gd ³⁺	UV-B lamps
Tb ³⁺	Fluorescent lamps
Dy ³⁺	Afterglow pigments
Ho ³⁺	Laser gain media
Er ³⁺	Laser
Tm ³⁺	Plasma displays
Yb ³⁺	Laser gain media

Iypische	Bandenemitter
Ce ³⁺	LEDs, UV lamps
Pr ³⁺	Detectors
Nd ³⁺	UV lamps
Eu ²⁺	LEDs
Yb ²⁺	Laser

Rare Earth Alloys and Compounds: Application Areas in Optics

Thermo luminescence	Thermal Radiators	Low and High Pressure Discharges	Electro luminescence
Gas mantle: 99% ThO ₂ + 1% CeO ₂	Incandescent and halogen lamps	Na and Hg Vapour lamps Metal halide lamps	Inorganic LEDs, OLEDs, and PLEDs
Flint stones: "Misch metal" = 30% Fe + 70% La-Sm	Glass additives La ₂ O ₃ /Ce ₂ O ₃	Electrodes: Sc ³⁺ , Y ³⁺ Gas fillings: DyI ₃ , HoI ₃ , TmI ₃ + Phosphors	Ceramic lenses Y, La, Ce, Eu, Gd, Tb, Lu comprising Phosphors

Physics and chemistry of the photon are key for advances in 21st century

- 1. Life Science
 - Photoreactor: Earth's atmosphere and "surface layer"
 - Photoreactor: Plants and algae \rightarrow Photosynthesis
 - Photoreactor: Eye
 - Photoreactor: Skin
 - Medical diagnostics
 - Medical therapy
- 2. Material Science
 - Converter for LEDs, Laser diodes, and OLEDs
 - Novel materials for photovoltaic cells
 - Photocatalysts for photoreactors (solar chemistry)
 - Photonic sensors
 - Photonic switches
 - Photonic computing
 - Solar driven disinfection

Inorganic Solid State Materials

Organic Biomatter

- Absorption
- **Activation**
- **Emission**
- **Charge separation**
- Charge trapping
- **Multiphononrelaxation Photochemistry Photoluminescence** Water cleavage Photostorage

Plant pigments Photocatalytic pigments Plants, scorpios **Photosynthesis**

Z = Zeaxanthine V = Violaxanthine

E-E	100 – 500 kJ/mol	F-F	159 kJ/mol	
		C-C	348 kJ/mol	
E=E	400 – 700 kJ/mol	0=0	498 kJ/mol	
		C=C	648 kJ/mol	
E=E	800 – 1100 kJ/mol	N≡N	946 kJ/mol	
		C≡C	839 kJ/mol	
H-bridg Var	es 10 - 160 kJ/mol n-der-Waals 0.5	H F > H O > H [.] N 5 - 5 kJ/mol		
	E-E E=E E=E H-bridg	E-E 100 – 500 kJ/mol E=E 400 – 700 kJ/mol E≡E 800 – 1100 kJ/mol H-bridges 10 - 160 kJ/mol Van-der-Waals 0.5	E-E 100 – 500 kJ/mol F-F E=E 400 – 700 kJ/mol O=O E=E 800 – 1100 kJ/mol N=N C=C H-bridges 10 - 160 kJ/mol H-··F > Van-der-Waals 0.5 - 5 kJ/mol	

•	1200 kJ/mol ⁻¹	600	3	300	150	75
	Vacuum		Ultraviolet	Visible		Near Infrared
	Ultraviolet					
1	00 nm	200	4	00	800	1600

Thus (V)UV to VIS radiation is able to cleave covalent chemical bonds

Penetration Depth of UV Radiation

3. Matter Radiation Interaction

Into Earth's Atmosphere

Vacuum UV (100 - 200 nm)

- Photolysis of water
- Cleavage of N₂ and O₂
- Ozone formation

UV-C (200 - 280 nm) & UV-B (280 - 300 nm)

Ozone cleavage

UV-B (300 - 320 nm) & UV-A (320 - 380 nm)

- Photochemical decline of air pollutants
- Ozon formation in presence of NO_x
- Disinfection at photocatalytically active sites

FH MÜNSTER

University of Applied Sciences

3. Matter Radiation Interaction

Into Water

- Power density @ surface: 1000 W/m²
- Photosynthesis feasible: 1 – 10 W/m²
- Phototaxis of crustacea: 10⁻⁷ – 10⁻⁸ W/m² (Full moon ~ 5 x 10⁻³ W/m²)
- Light perception: Deep sea fish 10⁻¹¹ W/m² Comparison: Scotopic vision Homo sapiens: 10⁻⁷ W/m² Perception limit at 10⁻¹² W/m² (~ star of 6th magnitude)

UV radiation solely penetrates surface layer!

3. Matter Radiation Interaction

Into Biomatter

Overview

Solar radiation Hg discharge lamps low pressure

- amalgam
- medium pressure Xe/(Hg) discharge lamps
- D₂ discharge lamps **Excimer** lasers

- > 300 nm
- 185, 254 nm 185, 254 nm 200 – 400 nm 230 – 800 nm 110 – 400 nm
- + phosphor \rightarrow 300 800 nm

ArF* 193 nm **Excimer discharge lamps (Dielectric Barrier Discharges: DBD)** 172 nm

- Xe₂*
- KrĈl*
- XeBr*
- XeCl*

Solid state lasers

- Al₂O₃:Cr
- Al₂O₃:Ti
- YAG:Nd
- (AI,Ga)N LEDs (In,Ga)N LEDs

694 nm 800 nm 1064 nm 210 – 370 nm 370 – 550 nm

222 nm

282 nm

308 nm

in bit

The Sun – Gravity Center and Heat & Light Source of the Solar System

FH MÜNSTER

University of Applied Sciences

Photosynthesis: Almost All Energy Consumed by Living Organisms Stems from Solar Energy (Exception: Thermophiles in Deep Sea)

Energy source in solar system: The sun Luminosity (radiation flux): 3.83·10²⁶ W Annual radiation power: 1.24·10³⁴ J (at present) Habitable zone: Venus (early stage of solar system), earth (today), mars (late phase...)

FH MÜNSTER University of Applied Sciences

Planet	Perihelion- and aphelion-distance in astronomic units (149.6 Mio km)	Solar radiation maximum und minimum (W/m²)
Mercury	0.3075 - 0.4667	14446 - 6272
Venus	0.7184 - 0.7282	2647 - 2576
Earth	0.9833 - 1.017	1413 – 1321
Mars	1.382 - 1.666	715 – 492
Jupiter	4.950 - 5.458	55.8 - 45.9
Saturn	9.048 - 10.12	16.7 – 13.4
Uranus	18.38 - 20.08	4.04 – 3.39
Neptune	29.77 - 30.44	1.54 - 1.47

Photosynthesis: The energetic base of the biosphere, i.e. Mn^{n+} catalysed water splitting, 2 H₂O \rightarrow 4 H⁺ + 4 e⁻ + O₂↑

Venus

 $\begin{array}{c} \text{2.61 kW/m}^2\\ \text{Albedo}=0.76\\ \rightarrow \text{T}_{\text{E}}=232 \text{ K}\\ 96\% \text{ CO}_2+3\% \text{ N}_2+\\ \text{SO}_2+\text{H}_2\text{O}+\text{Ar (ppm)}\\ \text{93 bar }\rightarrow \text{T}_{\text{eff}}=740 \text{ K} \end{array}$

Earth

 $\begin{array}{c} 1.37 \ \text{kW/m}^2 = 1.56 \cdot 10^{18} \ \text{kWh/a} \\ & \text{Albedo} = 0.30 \\ & \rightarrow \text{T}_\text{E} = 255 \ \text{K} \\ 78\% \ \text{N}_2 + 21\% \ \text{O}_2 + 0.9\% \ \text{Ar} \\ & + \ \text{CO}_2 + \text{H}_2\text{O} + \text{CH}_4 \ (\text{ppm}) \\ & 1 \ \text{bar} \ \rightarrow \text{T}_{\text{eff}} = 288 \ \text{K} \\ & \text{Life} = \text{aquatic chemistry} \\ \text{Water} \rightarrow 2 \ \text{H}_2 \ \text{and} \ \text{O}_2 \rightarrow \text{energy!} \end{array}$

Mars

FH MÜNSTER University of Applied Sciences

 $\begin{array}{c} 0.59 \ \text{kW/m^2} \\ \text{Albedo} = 0.15 \\ \rightarrow \text{T}_{\text{E}} = 213 \ \text{K} \\ 95\% \ \text{CO}_2 + 3\% \ \text{N}_2 + 1.5\% \\ \text{Ar} + \text{H}_2\text{O} \ \text{(ppm)} \\ \text{5.6 mbar} \rightarrow \ \text{T}_{\text{eff}} = 225 \ \text{K} \end{array}$

The Sun – Our Central Energy Source

The solar spectrum (global radiation)

Direct radiation

Diffuse radiation "Blue sky"

Colour temperatur ~ 5500 - 6500 K

50 W/m² UV and 0.1 W/m² UV-B

~ 10600 K

Almost no UV!

Hg vapour discharge lamps - Overview

Hg lamp	Low Pressure Hg	Amalgam	Medium Pressure Hg
invented 1904 for Rachitis therapy		-)1	
UV-C wavelength	254 nm	254 nm	200 - 280 nm
Typical lamp power	4 100 W	100 300 W	1 17 kW
Lamp efficiency	< 40%	30 35%	10 15%
GAC factor	85%	85%	80%
UV-C power per length	0.2 W / cm	0.7 W / cm	15 W / cm
Wall temperature	40 °C	100 °C	600 - 800 °C

Spectra can be modified by additional filling gases and phosphors

LEDs and laser diodes

"LED platform"		"Laser diode platform"		
465 nm LEDs	Illumination	940 nm	Remote control	
410 nm LEDs	Full conversion	785 nm	CD	
365 nm LEDs	Black light	655 nm	DVD	
265 nm LEDs	Disinfection	405 nm	Blue ray DVD	

Devices using a Dielectric Barrier Excimer Discharge (either O₂ or Xe)

Ozone generator (Wedeco AG)

Exhaust treatment (Siemens AG)

UV Radiation sources (Xenon) Triton

FH MÜNSTER

University of Applied Sciences

Flat lamp for LCD Backlighting (Osram AG)

Osram Xeradex

Solar and wind energy market is strongly growing

Situation in Germany	Year	Installed peak p	<u>ower</u>
	2011	18 GW solar	
		28 GW wind	
	2014	36 GW solar	Some days at noon conventional
		34 GW wind	power was not necessary anymore
	2020	~50 GW solar	power production spikes will be
		~40 GW wind	increased due to growth in PV!

Cut-off PV solar energy production by photocatalysis to store energy is of large interest!

Solar Cells from 1954 till today

First practical photovoltaic cell: Chapin, Fuller, Pearson at Bell Labs, 1954: 6% efficiency

Solar cell generations by materials

c-Si (crystalline) cells

(thin film) CdTe, GaAs, Cu(In,Ga)S₂, a-Si

Dye cells, organic cells, perovskite cells

1st generation cells

2nd generation cells

3rd generation cells

Main problem: Shockley-Queisser* (SQ) Limit \rightarrow PV efficiency < 30%

Optimal band gap: 1.34 eV!

Reference:

- Prince, JAP 26 (1955) 534
- Loferski, JAP 27 (1956) 777
- *W. Shockley, H.J. Queisser, *JAP* 32 (1961) 510

How to circumvent SQ limit and other losses?

Photon management: Multi band gap, multi-junction photovoltaics

Material challenges and development routes

Semiconductor	SQ limit	Challenges	Possible solutions
c-Si	25%	Absorption strength	Light in-coupling foils
a-Si	10%	SQ limit	Down/Up-converter
GaAs	28%	Toxicity	?
Cu(In,Ga)S ₂	20%	stability, price	Coatings, solid solut.
CdTe	17%	Toxicity	?
APbX ₃ (perovskites) A = CH ₃ NH ₃ ⁺ , X = Cl ⁻ , Br ⁻ , l ⁻	30%	Stability, hydrolysis	Encapsulation

Dye Sensitised Cells (Grätzel Cells): Inventor Prof. Michael Grätzel

Glass substrate with SnO₂:F (0.5 μm)

TiO₂-nano particle membrane (5 - 10 μm)

Electrolyte solution with redox mediator

Glass substrate with SnO₂:F (0.5 μm) and Pt-coating (2 μm)

TiO₂ is the catalyst for the charge separation, but does not absorb visible light

Dye Sensitised Cells (Grätzel Cells)

Photosensitisers

Advantages of Ru²⁺-chelating complexes

- Reversible Ru²⁺/Ru³⁺ redox pair
- Electronic low-spin configuration (anti-bonding orbitals are unoccupied)
- Chelating effect (entropic effect)
- ⇒ kinetically very stable (slow ligand exchange reaction)
- Allowed MLCT transitions at relative low energies
- ⇒ intense absorption bands in the visible range of the spectrum

Dye Sensitised Cells (Grätzel Cells)

Overall electron flow

Photovoltaic Energy Conversion Requires Strong Absorption of Light and Efficient Charge Carrier Separation

Solar cell type	absorption process	charge carrier separation
pn-semiconductor	band to band	by an electrostatic field at the pn-junction
Graetzel	MLCT on [RuL ₂ X ₂]	electron transfer to $n-TiO_2$ + oxidation of I^- to $\frac{1}{2}I_2$
"Chloroplast"	π-π* on chlorophyll	electron transfer to NADP+ + oxidation of O^{2-} to $\frac{1}{2}O_2$

- Energy conversion efficiency of best practice Graetzel Cells is about 10%
- Lifetime is a problem due to cell sealing and electrolyte leakage

World wide energy demand and production

- by distributed harvesting of solar energy on the long term!
 - \rightarrow Solar thermal processes
 - → Photovoltaics
 - → Photochemistry (artificial photosynthesis)

Challenges: Efficiency + Scalability + Lifetime

Pathways towards water cleavage 2 $H_2O(g) \rightarrow O_2(g) + 2 H_2(g)$

- Photosynthesis
 - Plants
 - Algae
- Thermolysis
- Electrolysis
- Photolysis
- Photocatalysis

Photocatalytic Process by Using Semiconductors

- First system explored in 1971 by A. Fujishima and K. Honda (Nature 238 (1972) 38) → TiO₂ with Pt as a co-catalyst
- In general water splitting is possible at around 1000 nm (1.23 eV), in real systems voltage is higher > ~1.8 V

Photocatalytic Process by Using Semiconductors and a Sensitizer

- First system using a sensitizer presented in 1981 by M. Graetzel (Nature 289 (1981) 158)
- → TiO₂ with Pt and RuO₂ as co-catalysts and [Ru(bpy)₃]²⁺ and methylviologen as sensitizers (antennae)
- Synthesis of Pt nanoparticles from H₂PtCl₆ and citrate

FH MÜNSTER University of Applied Sciences

5. Photochemical Water Splitting

Solar Hydrogen Generation

Schematic representation of visible light-driven H_2 production with D [NiFeSe]-H attached on ruthenium-dye sensitized TiO₂ nanoparticles, in the presence of a sacrificial electron donor D.

Visible light irradiation ($\lambda > 420$ nm) excites the Ru(bipy)₃ photo-sensitizer, which injects electrons into the conduction band of TiO₂ and on to the hydrogenase, resulting in H⁺ reduction.

Ref.: F.A. Armstrong, E. Reisner et al., Chemical Society Reviews 108 (2008) 2439

Photocatalytic Process by Using Semiconductors - Approaches

- A: single semiconductor system^P
- B: single semiconductor system with electron acceptor → O₂
- C: single semiconductor system with electron donor \rightarrow H₂

- D: combination of B and C (tandem system)
- Additionally: Powders in solution (\rightarrow detonating gas formation)

Photocatalytic Process by Using Semiconductors - Approaches

From Powder to Ceramics for a Light Splitting Tandem Cell

- Top structure (UV Blue)
 - Water splitting by an inorganic & stable photocatalyst
 - Conductive ceramic is required
 - Structured Platin deposition
- Bottom structure (Green NIR)
 - Photovoltaic unit
 - Options: Modification by up-converter and/or down-converter

Light Splitting Tandem Cell: PV Unit & Photocatalytical Unit

Ref.: T. Jüstel et al., German Patent Application, Energy Conversion System, DE102014107268

Requirements on the Photocatalyst

Stability

The most photochemically stable semiconductors in aqueous solution are oxides, but their band gaps are either too large for efficient light absorption (~3 eV), or their semiconductor characteristics are poor.

- Efficiency (band gap) For reasonable solar efficiencies, the band gap must be less than 2.2 eV, unfortunately, most useful semiconductors with band gaps in this range are photochemically unstable in water.
- Energetics

In contrast to metal electrodes, semiconductor electrodes in contact with liquid electrolytes have fixed energy levels where the charge carriers enter the solution. So even though a semiconductor electrode may generate sufficient energy to effect an electrochemical reaction, the energetic position of the band edges may prevent it from doing so. For spontaneous water splitting, the oxygen and hydrogen reactions must lie between the valence and conduction band edges, and this is almost never the case.

Photocatalyst Stability

Oxide	Band ga	p [eV]	Colour	_
ZrSiO ₄	6.5		white	_
ZrO ₂	5.0		white	
CaŴO₄	4.1		white	
ZnS	3.8		white	
KTaO ₃	3.4		white	
ZnO	3.3		white	
SrTiO ₃	3.2		white	
TiO ₂	3.0		white	
CeO ₂	2.8		yellow	
WO ₃	2.7		yellow	
BiVÕ₄	2.4-2.5		yellow	
CdS	2.3		orange	
Fe ₂ O ₃	2.0		red	
InÑ	1.9		red	
Doping	by	Ce ³⁺ , Pr Eu ²⁺	^{•3+} , Tb ³⁺	MMCT [Xe]4f ⁷ – I

LOT# UVC-2010-DE-ZS011b

Final Goal: Develop photocatalytic unit, comprising a hole blocking layer

Technology already applied in

- OLEDs and PLEDs
- Inverted Polymer Solar Cells
- Other photocatalysts

Deposition methods

- Sol-gel method
- Spin-coating
- Sputtering (RF-MS)
-

5. Photochemical Water Splitting

Recent Embodiment

- Charge carrier separation and e⁻/h⁺ conduction by epitactically grown AllnP, AllnPO layers
- Rh onto TiO₂ as photocathode
- RuO_x onto GaAs as photoanode
- Problem: Relief of evolving pH gradient

FH MÜNSTER University of Applied Sciences

Ref.: ACS Energy Lett. 3 (2018) 1795-1800

About 20% of the produced electrical energy is used for lighting (source: NASA)

Even more than 25 years after Germany's reunification East and West Berlin can be diminished by lighting

- **1961 Construction of the Berlin Wall**
- **1989** End of the Berlin Wall "The wind of change"
- **1990 Germany's reunification**
- 1993 Blue LED: (In,Ga)N
- 1996 White LED: YAG "The light of change"
- 2014 White LED > 300 lm/W & Nobel price
- **LED dominate lighting business**

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

East Berlin → Na lamps

West Berlin \rightarrow Hg lamps

Historical Development

10000 B.C.		19 th century	20 th century	21 st century
First there was open fire	then the fire was tamed	put into a glass bulb	and made more efficient	then the fire vanished and light only prevailed !

From chemical light sources

to electrical light sources

Historical Development: Luminous Efficacy and Energy Efficiency

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

FH MÜNSTER

University of Applied Sciences

Historical Development: Colours and Power Density

Luminescent screen

<u>1970</u> (Ga,As)P < 0.1 W < 1.0 Im < 10 Im/W < 120 °C < 100 W/cm² > 120 K/W yellow, red, NIR

2019 (Al,In,Ga)P, (In,Ga)N, (Al,Ga)N 1 - 10 W > 100 Im up to 303 Im/W 120 - 200 °C 100 - 200 W/cm² 2 - 12 K/W UV-A/B/C, all colors, NIR

Power Saving Potential by LEDs

Electric lighting consumes worldwide 2,600,000,000,000 Wh (2600 TWh) p.a. (~20% of total global electricity production) LED energy saving potential: 1500 TWh •Reductions in power plants: - 200 nuclear power plants or - 200 fossil power plants

Ref.: IEA, International Energy Agency

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

20.01.2011 (c) By Merck

high

moderate \rightarrow Phosphors!

Multichip LED Lamps

- Narrow band emitter e.g. LEDs
 - $\lambda_{1/2} = 30 \text{ nm}$
 - Several colored LEDs
- Theoretical maximum
 - 430 lm/W for
 - CCT = 4870 K
 - CRI = 3 (!)
- Feasible values
 - ~ 350 lm/W for CRI 90, n = 3 4
 - max. 320 lm/W for CRI 99, n = 5
- Problems
 - Thermal stability of the LEDs
 - LED efficiency
 - Red and blue
 - Green and yellow

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

CREE«

450

any to hit these industry-leading

FH MÜNSTER

University of Applied Sciences

Luminous Efficacy of Light Sources

- Strong dependence on emission spectrum
- Optimum is at 555 nm
 - V(λ) = 683 lm/W (100%)
- Lumen output
 - 1000 Im at 555 nm requires 1.5 W
 - Incandescent bulb ~ 80 W,
 i.e. 12.5 lm/W
- Blue and red radiation

 V(λ) < 70 lm/W (10%)

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

FH MÜNSTER

University of Applied Sciences

"Phosphor Converted" (pc) LED

Micropowders or Ceramics

Simplified energy level scheme of Eu²⁺

FH MÜNSTER

University of Applied Sciences

1st Generation pcLEDs: Wall Plug efficiency (WPE) >> Discharge lamps

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

FH MÜNSTER

University of Applied Sciences

2nd Generation pcLEDs: Enhancement of CRI and reduction of CCT

Status quo warm white phosphor converted LEDs @ 2019

Red phosphor		ohosphor	Eu ²⁺ activated		Molar	Coeffi-	Mass
•	LE	80 - 150 lm/W		Phosphor	Mass (g/mol)	cient for Fu ²⁺	fraction Fu ²⁺
•	CRI	85 – 95		Ca _{0.5} Sr _{0.45} Eu _{0.05} S	<u>99,14</u>	0,05	8%
•	ССТ	2500 - 4000 K		(Sr _{0,95} Eu _{0,05}) ₂ Si ₅ N ₈	434,12	0,1	4%
Re	f.: R. M	ueller-Mach, G.O. Mue	ller, P.J. Schmidt,	$\underline{Ca_{0,5}Sr_{0,45}Eu_{0,05}AlSiN_3}$	168,14	0,05	5%

T. Jüstel, Red Deficiency Compensating Phosphor LED, Light Emitting Device, US Patent 2003/0006702

First all nitride LED demonstrated in 2005 (QY > 0.9, QY_{rel}(200 °C) > 0.95)

(In,Ga)N LED + SrSi₂N₂O₂:Eu + Sr₂Si₅N₈:Eu

or (Sr,Ca)AlSiN₃:Eu or α-SiAlONes

Ref.: R. Mueller-Mach, G.O. Mueller, M.R. Krames, H. Höppe, F. Stadler, W. Schnick, T. Jüstel, P.J. Schmidt, Highly efficient all nitride phosphor converted white light emitting diode, Phys. Stat. Sol. A 202 (2005) 1727

6. Lighting Towards Ultimate Efficiency Eu²⁺

Red band emitter cause reduction in lum. efficacy

- Spectral interaction due to re-absorption 1.
- 2. **Reduction in lumen equivalent**

Requirements to an "ideal" red LED phosphor

- Narrow FWHM ~ 20 60 nm
- Emission peak at ~ 630 nm
- QY (excitation at 450 nm) > 90%
- Absorption at 450 nm > 50%
- $T_{1/2} > 200 \ ^{\circ}C$
- Decay time < 10 ms
- No saturation up to 100 W/mm² (good linearity)
- High (photo)chemical and thermal stability

Activator	Spectral range	Lumen equivalent	Decay	QY	Absorption
	[nm]	[Im/W _{opt}]	time τ	[%]	<u>at 450 nm</u>
RE-lons					
Eu ²⁺	360 - 700	50 – 550	~ 1 µs	high	strong
Eu ³⁺	590 - 710	200 – 360	~ 1 ms	high	weak
Sm ²⁺	670 - 770	< 100	~ 1 µs	high	moderate
Sm ³⁺	560 - 710	240 – 260	0.5 ms	moderate	weak
Pr ³⁺	590 - 680	100 – 220	0.1 ms	moderate	weak
TM-lons					
Mn ²⁺	500 - 650	100 - 550	5-15 ms	high	weak
Mn ⁴⁺	620 - 680	80 – 230	1-10 ms	high	moderate
Cr ³⁺	680 - 750	< 100	1-10 ms	high	moderate

Narrow band red emitter Sr[LiAl₃N₄]:Eu²⁺

Claimed as next generation LED-phosphor material"

```
Synthesis
LiAlH<sub>4</sub> + (1-x) SrH<sub>2</sub> + x EuF<sub>3</sub> + 2 AlN + N<sub>2</sub>
\rightarrow (Sr<sub>1-x</sub>Eu<sub>x</sub>)[LiAl<sub>3</sub>N<sub>4</sub>] + 3x HF + (3-x) H<sub>2</sub>
RF-Furnace, 1000 °C
```

Optical Properties $\lambda_{max} = 651 \text{ nm for } 5\% \text{ Eu}^{2+}$ FWHM = 1180 cm⁻¹ (~ 60 nm) QY(200 °C) > 95% rel. to QY(RT) Decay time of Eu²⁺ ~ 1.1 μs

Problems: Excitation @ 410 nm \rightarrow photoionisation and strong re-absorption of YAG:Ce/LuAG:Ce PL

Ref.: W.S. Schnick et al., Nature Materials (2014) 1-6

Prof. Dr. T. Jüstel, Münster University of Applied Sciences, Germany

FH MÜNSTER University of Applied Sciences

Remaining Options

La₂W₃O₁₂:Eu

Red emitter Eu ³⁺	LE [lm/W _{opt.}] 220 – 360	QY at RT high
Pr ³⁺	200 – 220	moderate
Mn ⁴⁺	5 – 200	high

Red line emitter \rightarrow Mn⁴⁺

Ref.: A. Srivastava et al., GE, US Patent US2006/0169998

Very stable, but low luminous efficacy

NbF./HF-solution

20 min 20 *C

Stirring

Washing /

Drying

HE

6. Lighting Towards Ultimate Efficiency

K₃MnF₄

excess KF

Stirring

HE

Red line emitter $\rightarrow K_2(Nb,Ta)F_7:Mn^{4+}$

λ_{max} = 628 nm LE = 228 lm/W CIE1931: x = 0.690; y = 0.310

Ref.: T. Jansen, F. Baur, T. Jüstel, Red Emitting K₂NbF₇:Mn⁴⁺ and K₂TaF₇:Mn⁴⁺ for Warm-White LED Applications, J. Luminescence 192 (2017) 644

Red line emitter \rightarrow K₂(Nb,Ta)F₇:Mn⁴⁺ with superior luminous efficacy (LE)

Blue LED + YAG:Ce +	CCT [K]	LE [Im/W _{opt}]	CRI	
K ₂ NbF ₇ :Mn ⁴⁺	3000	346	95	1,0 465 nm LED + YAG:Ce +
	2700	345	95	$ \begin{array}{c} $
K ₂ TaF ₇ :Mn ⁴⁺	3000	345	95	
	2700	345	94	0,4 -
Na ₃ AIF ₆ :Mn ⁴⁺	3000	345	95	
	2700	344	95	
K ₂ SiF ₆ :Mn ⁴⁺	3000	339	95	0,0 450 500 550 600 650 700 750 800 Wellenlänge (nm)
	2700	297	95	
Mg ₁₄ Ge ₅ O ₂₄ :Mn ⁴⁺	3000	254	83	
	2700	241	78	
Y ₂ Mg ₃ Ge ₃ O ₁₂ :Mn ⁴⁺	3000	255	84	A 2700 K LED comprising YAG:Ce and KaTaF-:Mn ⁴⁺
	2700	242	79	shows a 15% higher LE
CaAlSiN ₃ :Eu ²⁺	3000	272	93	than an LED comprising
	2700	260	95	YAG:Ce and K ₂ SiF ₆ :Mn ⁴⁺

FH MÜNSTER

University of Applied Sciences

The Quest for a Narrow Band Red Emitter $Eu^{2+} \rightarrow Mn^{4+}$ or CdSe / InP QDots

Material	Peak at [nm]	FWHM [nm]	Pros	Cons					
(Sr,Ca)S:Eu	615 - 650	60 - 70	Rather narrow band	Low chemical stability					
(Sr,Ba) ₂ Si ₅ N ₈ :Eu	585 - 625	80 - 100	Reliability	IR spillover					
(Ca,Sr)AlSiN ₃ :Eu	610 – 655	80 – 90	Reliability	IR spillover					
SrLiAl ₃ N ₄ :Eu	650	50 nm	Narrow band	Self absorption, some IR spillover					
K ₂ SiF ₆ :Mn	631	Lines < 2 nm	Very narrow band, low stab.	Moderate absorption					
CdSe QDots	Tunable green to red	30 – 50	Narrow band	Reliability, Reabsorption					
InP QDots	Tunable green to red	45 – 65	Narrow band	Reliability, Reabsorption					
Direct red LEDs	Tunable red	25 – 35	No Stokes loss Narrow band	Strong TQ, more complex					
K ₂ (Ta,Nb)F ₇ :Mn	628	Lines < 2 nm	Very narrow band, stability?	Moderate absorption					
Modified from GE, PGS2016, Newport Beach, CA, USA									

Red line emitter \rightarrow Remaining problem: Saturation at ~ 1 W/mm²

T. Jansen, D. Böhnisch, T. Jüstel, On the Photoluminescence Linearity of Eu²⁺ based LED Phosphors upon High Excitation Density, ECS J. Solid State Sci. Technol. 5 (2016) R91 Valenzband

Morphology of converter: μ -powders \rightarrow Nanopowders or ceramics

Blue (In,Ga)N LED + YAG:Ce μ-powder (many products, industrial standard) Blue (In,Ga)N LED + (Y,Lu)AG:Ce ceramic body (Philips: Lumiramic, Osram: c², Schott)

FH MÜNSTER

University of Applied Sciences

21st Century Light/Radiation Sources

Parameter	Xe Excimer Discharge					rge		LED		Laser Diode (LD)		
Power density	1-10 W/cm ²							100-100	0 W/cm ²	> 1000 W/cm ²		
Spectral range	170 - 700 nm							210 - MIR 210 - MIR		R		
Life time	> 10000 h							> 30000	h	> 10000 h		
Application areas	Application areas Plasma displays					Illumina	ation	Projection				
	Disi	nfec	tion	-				Photop	olym.	Data transfer		
	Pur	ificat	tion					Photom	edicine	Photom	edicine	
Photochemistry						Agricul	ture	Signalli	ng			
	Lithography					Automotive Automo		otive				
	0, 1, 2					Aviation		Photophysics				
	C	80%		• •	*.					Wi-Fi	Li-Fi	
	n Efficien	70% -				•				10 ⁹ Hz	10 ¹⁴ Hz	
	Quantum	. 50% -								7 Gb/s	3 Tb/s	
	ernal	40% -	1.12							lens	3 color	
	Ext	30%	•						violet LD		pnospnors	
Def - C. Humi et al. Applied (380	400 Pea	ak Wa	420 velength	440 (nm)	460			7		
Ref.: C. Hurni et al., Applied P	nysics		ers 1	06,	031	101 (2015	·) —				

Increase of energy density drives search for novel materials

7. Summary and Outlook Ceramics & Development of light sources driven by material science **Crystals Nitrides** (In,Ga)N **Material** (Al,In,Ga)P BREAKING BARRIERS **303** control Garnets Cree leads the industry in LED effication and innovation. We were the first GaAs company to hit these industry-leading performance milestones and we're not stopping Halogen cycle **Rare Earth CREE**¢ **Phosphors** MgWO₄ & Zn₂SiO₄:Mn C, Os, W Fluorescent lamps Incandescent lamps 1905 1915 1945 1995 1895 1925 1935 1955 1965 1975 1985 2005 2015 Year

Demands on converter materials & photo catalysts 1000

- \Rightarrow Materials with
- High thermal quenching temperature
- Reduced (photo)chemical aging
- Increased linearity and thus absorption strength
- Reduced tendency for photoionisation
- ⇒ Rigid host materials with high thermal conductivity, little thermal expansion, low defect density and optimised e⁻/h⁺ mobility
- \Rightarrow Future activities
- Development of suitable analytical tools and spectroscopy
- Link CF- and JO-theory to predict intens. of 4f-4f transitions
- Find rigid hosts for VUV, UV-C or, x-ray excitation
- Develop core-shell particles & translucent ceramics
- Photochemistry with excimer lamps, LEDs, and Laser
- Photochemical processes for nanoscale coatings

Ref.: T. Jansen, D. Böhnisch, T. Jüstel, ECS J. of Solid State Science and Technology 5 (2016) R91

Trend: Use solar light & combine with traditional light sources, e.g. for indoor lighting and/or water, air, and surface disinfection

Trend: Micro LEDs for next generation displays (beyond LCD and OLED)

Large displays with low pixel densities (TV, smartphones...): R,G,B LED or Blue + color converter High resolution/pixel density integrated arrays for microdisplays (AR/MR/VR):

FH MÜNSTER University of Applied Sciences

7. Summary and Outlook

Trend: Horticulture Lighting

Trend: Horticulture Lighting by using LEDs

- Na low-pressure discharge lamps
- Fluorescent lamps with RB phosphor blend
- Blue and red LEDs
- Blue LEDs + red phosphor (~ 680 nm) \rightarrow Efficacy \uparrow

Grass cultivated upon daylight or upon LED illumination Daylight (left vessel) and LED illumination (right vessel) Plants Roots

Literature

Internet-Links

Homepage T. Jüstel (Download-Portal, PISA & LISA) www.fh-muenster.de/juestel

Further Reading

- T. Jüstel, H. Nikol, C.R. Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays, Angew. Chem. 110 (1998) 3250
- T. Jüstel, H. Nikol, Optimization of Luminescent Materials for Plasma Display Panels, Adv. Materials 12 (2000) 527
- M. Born, T. Jüstel, Elektrische Lichtquellen, Chemie in unserer Zeit 40 (2006) 294
- H. Hummel, P.K. Bachmann, T. Jüstel, J. Merikhi, C.R. Ronda, V. Weiler, Near-Infrared Luminescent Nano Materials for In-Vivo Optical Imaging, J. Nanophotonics 2 (2008) 021920
- T. Jüstel, S. Möller, H. Winkler, W. Adam, Luminescent Materials in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A1-28, Wiley-VCH (2012) M. Kubus, D. Enseling, T. Jüstel, H.-Jürgen Meyer, Synthesis and Luminescent Properties of Red-Emitting Phosphors: $ZnSiF_6$ ·6H₂O and $ZnGeF_6$ ·6H₂O Doped with Mn⁴⁺, J. Luminescence 137 (2013) 88
- T. Jüstel, Anorganische Leuchtstoffe und LEDs, CHEManager 5 (2017)
- J. Chen, S. Loeb, J-H. Kim, LED Revolution: Fundamentals and Prospects for UV Disinfection Applications, Envir. Sci.: Water Res. Technol. 3 (2017) 188
- T. Jansen, M. Kirm, M.G. Brik, S. Vielhauer, M. Oja, N.M. Khaidukov, V.N. Makhov, T. Jüstel, ECS JSSST 7 (2018) R3086
- R. Pöttgen, T. Jüstel, C. Strassert, Rare Earth Element Chemistry, Wiley-VCH (2020)

Literature

Further Reading

- Influence of Carbonic Acid upon Temperature of the Ground (Phil. Mag. J. Science 41 (1896) 237) !!!
- H₂ aus H₂O und Sonnenenergie (Bulletin SEVVSE 24-25 (2005) 11)
- CO₂-storage by silicate chemistry (Energy Procedia 1 (2009) 3149)
- Global Hg Emissions to the atmosphere (Atmos. Chem. Phys. 10 (2010) 5951)
- Extreme melt on Canadas Arctic ice caps in the 21st century (Geophys. Res. Lett. 38 (2011) L11501)
- September Arctic sea ice predicted to disappear near 2°C global warming above present (J Geophys Res 117 (2012) D06104)
- Global warming releases microplastic legacy frozen in Arctic Sea ice (Earths Future 2 (2014) 315)
- Global oxygen budget and its future projection (Science Bull. 63 (2018) 1180)
- The Information Factories (Nature 561 (2018) 163)
- Kunststoffe in der Umwelt (Fraunhofer Umsicht Juni 2018)
- Arctic sea ice is an important temporal sink for microplastic (Nature Comm. (2018) 1)
- Plastic degradation in cold marine habitats (Appl. Microbiol. Biotech. 102 (2018) 7669)

Literature

Further Reading

- Ecotoxicity of the two veterianarian antibiotics ceftiofur and cefapirin before and after phototransformation (Science Total Environment 619-620 (2018) 866)
- Existential climate-related security risk (Policy Paper May 2019)
- CO₂-Das Klimagas vergraben (Spektrum der Wissenschaft 7 (2019) 62)
- Rapid increase in Asian bottles in the South Atlantic Ocean (PNAS (2019) 1)
- Assessing Plastic Ingestion from Nature to People (Dalberg WWF analysis (2019) 1)
- UN Report: Nature's Dangerous Decline Unprecedented; Species Extinction Rates Accelerating (2019)
- New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding (Nature Commun. 10 (2019) 4844)
- Four Decades of Antarctic Ice Sheet Mass Balance from 1979-2017 (PNAS 116 (2019) 1097)
- How hot will earth get until 2100? (Nature 580 (2020) 444)
- Permian–Triassic mass extinction pulses (Nature Geosciences (2020))
- Global food system emissions could preclude achieving the 1.5 and 2 °C climate change targets (Science (2020))
- Global human-made mass exceeds all living biomass (Nature (2020))