DEUTSCH

Introduction

In this module students learn stochastic methods to describe Signals and how these signals propagate through a linear system. The students can develop optimized filters based on the input signal statistics.

Lecture

  • Probability, Random variables, Probability density functions, Expectation values,
  • Correlation
  • Time discrete stochastic processes
  • Quantization
  • Adaptive coding
  • Wiener Filter, Introduction to Kalman-Filters

Hands-on

  • Stochastic signals with various probability density functions
  • Simulation of quantization effects
  • Generation of test signals
  • Simulation of adaptive coding
  • Simulation of linear systems and stochastic input signals

Time Table

  • Extent: 2 SWS Lecture, 1 SWS Exercise, 1 SWS Hands-On
  • Time Table
    • Lecture: No Lecture during this Semester
    • Exercise: No Exercise during this Semester
    • Hands-on: See Group Assignment List

Literature

  • Oppenheim, A.V; Schafer, R.W, Buck, J.,R.; Zeitdiskrete Signalverarbeitung, Pearson Studium, 2004.
  • Oppenheim, A.; Willsky, S., A.; Signals and Systems, Prentice Hall, 1997.
  • Jayant, N.S.; Noll, P., Digital Coding of Waveforms, Prentice Hall, 1984.
  • Papoulis, A.; Signalanalysis, McGraw Hill, 1977.
  • Girod, B.; Rabenstein, R.; Stenger, A.; Einführung in die Systemtheorie, Teubner Verlag, 1997.


Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Weitere Informationen und die Möglichkeit zum Widerruf finden Sie in unserer Datenschutzerklärung.
Seite drucken